Skip to main content
Log in

Growth Mechanism of Primary and Eutectic TiB2 Particles in a Hypereutectic Steel Matrix Composite

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The growth mechanism of primary and eutectic TiB2 particles in a hypereutectic steel matrix composite (SMC) has been investigated by combining microstructure and crystallographic analysis in the present work. It is found that the TiB2 particles in the as-cast microstructure have complex morphologies including two kinds of primary particles and several categories of eutectic particles. Twin-induced dendritic growth of primary TiB2 particles and epitaxial growth of eutectic fibers are found in the present SMC by detailed crystallography analysis. Furthermore, we demonstrate that the crystallographic features strongly affect the solidification process and the final microstructures. Finally, several alloying strategies are proposed to control the solidification microstructure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. [1] R. Rana. High Modulus Steels, Canadian Metallurgical Quarterly 2014, vol. 53, pp. 241-242.

    Article  Google Scholar 

  2. [2] S. Pramanik, S. Suwas, R.K. Ray, Canadian Metallurgical Quarterly 2014, vol. 53, pp. 274-281.

    Article  Google Scholar 

  3. [3] S. Münstermann, Y. Feng, W. Bleck, Canadian Metallurgical Quarterly 2014, vol. 53, pp. 264-273.

    Article  Google Scholar 

  4. [4] F. Bonnet, V. Daeschler, G. Petitgand, Canadian Metallurgical Quarterly 2014, vol. 53, pp. 243-252.

    Article  Google Scholar 

  5. [5] S. Lartigue-Korinek, M. Walls, N. Haneche, L. Cha, L. Mazerolles, F. Bonnet, Acta Materialia 2015, vol. 98, pp. 297-305.

    Article  Google Scholar 

  6. [6] M.X. Huang, B.B. He, X. Wang, H.L. Yi, Scripta Materialia 2015, vol. 99, pp. 13-16.

    Article  Google Scholar 

  7. [7] R. Arsenault, L. Wang, C. Feng, Acta metallurgica et materialia 1991, vol. 39, pp. 47-57.

    Article  Google Scholar 

  8. [8] N. Ramakrishnan, Acta Materialia 1996, vol. 44, pp 69-77.

    Article  Google Scholar 

  9. Y.Z. Li, Z.C. Luo, H.L. Yi, M.X. Huang, Metall. Mater. Trans. E 2016, pp. 1–6.

  10. [10] H. Springer, R. Aparicio Fernandez, M.J. Duarte, A. Kostka, D. Raabe, Acta Materialia 2015, vol. 96, pp. 47-56.

    Article  Google Scholar 

  11. [11] R. Aparicio-Fernández, H. Springer, A. Szczepaniak, H. Zhang, D. Raabe, Acta Materialia 2016, vol. 107, pp. 38-48.

    Article  Google Scholar 

  12. [12] A.H. M. G. Day, Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 1968, vol. 305, pp. 473-491.

    Article  Google Scholar 

  13. [13] S.H. Ko, S. Hanada, Intermetallics 1999, vol. 7, pp. 947-955.

    Article  Google Scholar 

  14. [14] S. Kobayashi, A. Schneider, S. Zaefferer, G. Frommeyer, D. Raabe, Acta Materialia 2005, vol. 53, pp. 3961-3970.

    Article  Google Scholar 

  15. S. Akamatsu, M. Plapp, Curr. Opin. Solid State Mater. Sci. 2015, pp. 1–26.

  16. [16] S.-Z. Lu, A. Hellawell, MTA 1987, vol. 18, pp. 1721-1733.

    Article  Google Scholar 

  17. [17] Y.T. Pei, J.T.M. De Hosson, Acta Materialia 2001, vol. 49, pp. 561-571.

    Article  Google Scholar 

  18. [18] S. Shankar, Y.W. Riddle, M.M. Makhlouf, Acta Materialia 2004, vol. 52, pp. 4447-4460.

    Article  Google Scholar 

  19. [19] Y. Zhang, H. Zheng, Y. Liu, L. Shi, R. Xu, X. Tian, Acta Materialia 2014, vol. 70, pp. 162-173.

    Article  Google Scholar 

  20. [20] X. Liu, Y. Zhang, B. Beausir, F. Liu, C. Esling, F. Yu, X. Zhao, L. Zuo, Acta Materialia 2015, vol. 97, pp. 338-347.

    Article  Google Scholar 

  21. [21] R.G. Munro, Journal of Research of the National Institute of Standards and Technology 2000, vol. 105, pp. 709-720

    Article  Google Scholar 

  22. [22] D.R. Veblen, J.E. Post, Am Mineral 1983, vol. 68, pp. 790-803.

    Google Scholar 

  23. [23] M.X. Zhang, P.M. Kelly, Acta Materialia 2005, vol. 53, pp. 1073-1084.

    Article  Google Scholar 

  24. [24] H. Yi, D. Zhang, Materials Letters 2003, vol. 57, pp. 2523-2529.

    Article  Google Scholar 

  25. [25] J. Weiss, C. Loper, AFS Trans 1987, vol. 32, pp. 51-62.

    Google Scholar 

  26. [26] M. Croker, R. Fidler, R. Smith, Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 1973, vol. 335, pp.15-37.

    Article  Google Scholar 

  27. [27] K. Jackson, J. Hunt, AIME Met Soc Trans 1966, vol. 236, pp. 1129-1142.

    Google Scholar 

  28. [28] S.T. Bluni, M.R. Notis, A.R. Marder, Acta Metallurgica et Materialia 1995, vol. 43, pp. 1775-1782.

    Article  Google Scholar 

  29. [29] H.V.G. M.M. Makhlouf, Journal of Light Metals 2001, vol. 1, pp. 199-218.

    Article  Google Scholar 

  30. [30] R.E. Reed-Hil: Physical metallurgy principles, 1st ed., Van Nostrand Reinhold Company Co., New York, NY, 1973, pp: 375-376.

    Google Scholar 

  31. [31] J. Sun, X. Zhang, Y. Zhang, N. Ma, H. Wang, Micron 2015, vol. 70, pp. 21-25.

    Article  Google Scholar 

  32. [32] S.H. Davis. Theory of Solidification, Cambridge University Press, Cambridge, 2001.

    Book  Google Scholar 

  33. [33] L. Yang, S. Li, X. Chang, H. Zhong, H. Fu, Acta Materialia 2015, vol. 97, pp. 269-281.

    Article  Google Scholar 

  34. [34] M.A. Salgado-Ordorica, M. Rappaz, Acta Materialia 2008, vol. 56, pp. 5708-5718.

    Article  Google Scholar 

  35. [35] D.J. Fisher, W. Kurz, Acta Metallurgica 1980, vol. 28, pp. 777-794.

    Article  Google Scholar 

  36. [36] C. Li, Y.Y. Wu, H. Li, X.F. Liu, Acta Materialia 2011, vol. 59, pp. 1058-1067.

    Article  Google Scholar 

  37. [37] L. Chen, H.-Y. Wang, Y.-J. Li, M. Zha, Q.-C. Jiang, CrystEngComm 2014, vol. 16, pp. 448-454.

    Article  Google Scholar 

  38. [38] N. Kubota, J.W. Mullin, J Cryst Growth 1995, vol. 152, pp. 203-208.

    Article  Google Scholar 

Download references

Acknowledgments

M.X. Huang acknowledges the support from the Steel Joint Funds of the National Natural Science Foundation of China (Grant No. U1560204) and the support from Research Grants Council of Hong Kong (Grants Nos. HKU719712E, HKU712713E).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. X. Huang.

Additional information

Manuscript submitted September 15, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, Z.C., He, B.B., Li, Y.Z. et al. Growth Mechanism of Primary and Eutectic TiB2 Particles in a Hypereutectic Steel Matrix Composite. Metall Mater Trans A 48, 1981–1989 (2017). https://doi.org/10.1007/s11661-017-4001-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-017-4001-5

Keywords

Navigation