Skip to main content
Log in

Improving Cleanliness and Controlling Inclusion Characteristics in High-Nitrogen Stainless Bearing Steels by Optimizing Addition Order and Contents of Mg and Ce

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The cleanliness and inclusion characteristics are crucial to the service life of bearing steels. In this work, the effects of addition order and contents of Mg and Ce on cleanliness and inclusion characteristics in high-nitrogen stainless bearing steels were systematically investigated by microstructure characterization and thermodynamic analysis. The results showed that the O and S contents could be decreased from about 0.0040 wt pct and 0.0028 wt pct to 0.0012 wt pct and 0.0014 wt pct, respectively. The inclusion evolution processes by Mg pretreatment and Ce addition (MgCe) were: Al2O3 → MgO and MnS → MgS + Ce–O–S, and those of Ce pretreatment and Mg addition (CeMg) were: Al2O3 → Ce–O–S and MnS → Ce–O–S + MgS, which were consistent with thermodynamic calculation. For MgCe treatment, owing to the high Ce content (0.018 wt pct), the number density (NA), total area (S) and average size (d) of inclusions were large, and those would decreased by reducing the Ce content to 0.012 wt pct. For CeMg treatment, a large number of Mg-containing inclusions (especially deleterious Mg3N2) formed because of the high Mg content (0.0066 wt pct). As the Mg content decreased to 0.0043 wt pct, the NA and S of inclusions increased instead. In this study, the optimum addition order was Mg pretreatment and Ce addition, and the optimized contents were about 0.0044 wt pct and 0.012 wt pct, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. L.A. Luiz, B.C.E.S. Kurelo, G.B.d. Souza, J.d. Andrade, and C.E.B. Marino: Mater. Today Commun., 2021, vol. 28, pp. 102655.

  2. D. López, N. Alonso Falleiros, and A. Paulo Tschiptschin: Tribol. Int., 2011, vol. 44, pp. 610–16.

  3. H. Feng, Z.H. Jiang, H.B. Li, P.C. Lu, S.C. Zhang, H.C. Zhu, B.B. Zhang, T. Zhang, D.K. Xu, and Z.G. Chen: Corros. Sci., 2018, vol. 144, pp. 288–300.

    Article  CAS  Google Scholar 

  4. N.B. Dhokey, A. Upadhye, N. Shah, and K.T. Tharian: Mater. Today: Proc., 2021, vol. 43, pp. 3023–29.

    CAS  Google Scholar 

  5. Y. Han, H.B. Li, H. Feng, Y.Z. Tian, Z.H. Jiang, and T. He: Mater. Sci. Eng. A, 2021, vol. 814, pp. 141235.

  6. P. Zhao, S. Yang, W. Liu, Y. Yuan, J. Li, and L. Zheng: J. Alloys Compd., 2022, vol. 894, pp. 162464.

  7. C. Loable, I.N. Viçosa, T.J. Mesquita, M. Mantel, R.P. Nogueira, G. Berthomé, E. Chauveau, and V. Roche: Mater. Chem. Phys., 2017, vol. 186, pp. 237–45.

    Article  CAS  Google Scholar 

  8. H. Feng, H.B. Li, Z.H. Jiang, T. Zhang, N. Dong, S.C. Zhang, P.D. Han, S. Zhao, and Z.G. Chen: Corros. Sci., 2019, vol. 158, pp. 108081.

  9. Y. Qin, J. Li, and M. Herbig: Mater. Charact., 2020, vol. 159, pp. 110049.

  10. W. Trojahn, E. Streit, H.A. Chin, and D. Ehlert: Materialwiss. Werkstofftech., 1999, vol. 30, pp. 605–11.

    Article  CAS  Google Scholar 

  11. P.C. Lu, H.B. Li, H. Feng, Z.H. Jiang, H.C. Zhu, Z.Z. Liu, and T. He: Metall. Mater. Trans. B., 2021, vol. 52, pp. 2210–23.

    Article  CAS  Google Scholar 

  12. Z.X. Cao, Z.Y. Shi, F. Yu, G.L. Wu, W.Q. Cao, and Y.Q. Weng: Int. J. Fatigue., 2019, vol. 126, pp. 1–5.

    Article  CAS  Google Scholar 

  13. C.Y. Yang, Y.K. Luan, D.Z. Li, and Y.Y. Li: J. Mater. Sci. Technol., 2019, vol. 35, pp. 1298–1308.

    Article  CAS  Google Scholar 

  14. H. Feng, H.B. Li, Z.Z. Liu, Z.H. Jiang, P.C. Lu, and T. He: Metall. Mater. Trans. B., 2021, vol. 52, pp. 3777–87.

    Article  CAS  Google Scholar 

  15. G.X. Qiu, D.P. Zhan, L. Cao, and H.S. Zhang: J. Iron Steel Res. Int., 2021, vol. 28, pp. 1168–79.

    Article  CAS  Google Scholar 

  16. Q. Ren, Y. Zhang, Y. Ren, L. Zhang, J. Wang, and Y. Wang: J. Mater. Sci. Technol., 2021, vol. 61, pp. 147–58.

    Article  CAS  Google Scholar 

  17. W. Xiao, Y.P. Bao, C. Gu, M. Wang, Y. Liu, Y.S. Huang, and G.T. Sun: Int. J. Miner. Metall. Mater., 2021, vol. 28, pp. 804–15.

    Article  Google Scholar 

  18. Z. Yu and C.J. Liu: Metall. Mater. Trans. B., 2019, vol. 50, pp. 772–81.

    Article  CAS  Google Scholar 

  19. W.J. Ma, Y.P. Bao, M. Wang, and L.H. Zhao: ISIJ Int., 2014, vol. 54, pp. 536–42.

    Article  CAS  Google Scholar 

  20. X.J. Wang, G.Q. Li, Y. Liu, F. Wang, and Q. Wang: ISIJ Int., 2021, vol. 61, pp. 1850–59.

    Article  CAS  Google Scholar 

  21. Y. Huang, G. Cheng, S. Li, and W. Dai: Steel Res. Int., 2018, vol. 89, p. 1800371.

    Article  Google Scholar 

  22. L. Wang, B. Song, Z.B. Yang, X.K. Cui, Z. Liu, W.S. Cheng, and J.H. Mao: Int. J. Miner. Metall. Mater., 2021, vol. 28, pp. 1940–48.

    Article  CAS  Google Scholar 

  23. L. Cheng, L. Zhang, Y. Ren, and J. Zhang: J. Alloys Compd., 2020, vol. 845, pp. 155877.

  24. W.G. Wilson, D.A.R. Kay, and A. Vahed: JOM., 1974, vol. 26, pp. 14–23.

    Article  CAS  Google Scholar 

  25. A. Vahed and D.A.R. Kay: Metall. Trans. B., 1976, vol. 7, pp. 375–83.

    Article  Google Scholar 

  26. E.I. Castro Cedeño, M. Herrera Trejo, M. Castro Román, F. Castro Uresti, and M. López Cornejo: Metall. Mater. Trans. B, 2016, vol. 47, pp. 1613–25.

  27. C. Liu, M. Yagi, X. Gao, S. Kim, F. Huang, S. Ueda, and S. Kitamura: Metall. Mater. Trans. B., 2018, vol. 49, pp. 113–22.

    Article  CAS  Google Scholar 

  28. J.H. Shin and J.H. Park: Metall. Mater. Trans. B., 2017, vol. 48, pp. 2820–25.

    Article  CAS  Google Scholar 

  29. W. Gong, Z.H. Jiang, L.X. Zhang, C.Y. Chen, and Y.W. Dong: Mater. Sci. Eng. A, 2020, vol. 791, pp. 139410.

  30. X. Li, Z.H. Jiang, X. Geng, M.J. Chen, and S. Cui: Steel Res. Int., 2019, vol. 90, p. 1900103.

    Article  Google Scholar 

  31. X. Li, Z.H. Jiang, X. Geng, M.J. Chen, and L.Z. Peng: ISIJ Int., 2019, vol. 59, pp. 1552–61.

    Article  CAS  Google Scholar 

  32. Y. Li, Q. Wang, M. Sun, C.Y. Chen, and Z.H. Jiang: Steel Res. Int., 2021, vol. 92, p. 2100190.

    Article  CAS  Google Scholar 

  33. L. Wang, B. Song, J. Mao, X. Cui, and Z. Liu: Ironmak. Steelmak., 2021, pp. 1–10.

  34. H.C. Zhu, H.B. Li, Z.W. Ni, Z.Y. He, Z.H. Jiang, H. Feng, S.C. Zhang, and D.S. Mao: Metall. Mater. Trans. B., 2021, vol. 53B, pp. 50–59.

    Google Scholar 

  35. B. Alfredsson and E. Olsson: Int. J. Fatigue., 2012, vol. 41, pp. 130–39.

    Article  CAS  Google Scholar 

  36. R.M. Geng, J. Li, and C.B. Shi: ISIJ Int., 2021, vol. 61, pp. 1506–13.

    Article  CAS  Google Scholar 

  37. Q. Ren, L.F. Zhang, Z.Y. Hu, and L. Cheng: Ironmak. Steelmak., 2021, vol. 48, pp. 191–99.

    Article  CAS  Google Scholar 

  38. Q. Ren, L.F. Zhang, Y.B. Liu, L.X. Cui, and W. Yang: J. Mater. Res. Technol., 2020, vol. 9, pp. 8197–8206.

    Article  CAS  Google Scholar 

  39. H. Ohta and H. Suito: Metall. Mater. Trans. B., 1997, vol. 28, pp. 1131–39.

    Article  Google Scholar 

  40. S. Abraham, R. Bodnar, J. Raines, and Y. Wang: J. Iron Steel Res. Int., 2018, vol. 25, pp. 133–45.

    Article  Google Scholar 

  41. L. Yang and G.G. Cheng: Int. J. Miner. Metall. Mater., 2017, vol. 24, p. 869.

    Article  CAS  Google Scholar 

  42. M. Wakoh and N. Sano: ISIJ Int., 2007, vol. 47, pp. 627–32.

    Article  CAS  Google Scholar 

  43. K. Hashimoto, T. Fujimatsu, N. Tsunekage, K. Hiraoka, K. Kida, and E.C. Santos: Mater. Des., 2011, vol. 32, pp. 1605–11.

    Article  CAS  Google Scholar 

  44. Y. Kim, H. Kim, S.Y. Shin, K. Rhee, S.B. Ahn, D.L. Lee, N.J. Kim, and S. Lee: Metall. Mater. Trans. A., 2012, vol. 43, pp. 882–92.

    Article  CAS  Google Scholar 

  45. A. Ghosh, P. Modak, R. Dutta, and D. Chakrabarti: Mater. Sci. Eng. A., 2016, vol. 654, pp. 298–308.

    Article  CAS  Google Scholar 

  46. C. Wang, R. Ma, Y. Zhou, Y. Liu, E.F. Daniel, X. Li, P. Wang, J. Dong, and W. Ke: J. Mater. Sci. Technol., 2021, vol. 93, pp. 232–43.

    Article  Google Scholar 

  47. J. Torkkeli, T. Saukkonen, and H. Hänninen: Corros. Sci., 2015, vol. 96, pp. 14–22.

    Article  CAS  Google Scholar 

  48. Q. Ren and L.F. Zhang: Metall. Mater. Trans. B., 2020, vol. 51, pp. 589–600.

    Article  CAS  Google Scholar 

  49. X.H. Zheng, Q. Wang, M.L. Zhou, and C. Li: Sci. China Ser. E Technol. Sci., 2002, vol. 45, pp. 249–54.

    Article  CAS  Google Scholar 

  50. H.Z. Ye, X.Y. Liu, and B. Luan: Mater. Lett., 2004, vol. 58, pp. 2361–64.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was sponsored by the National Natural Science Foundation of China [Grant Nos. U1960203/52004060], China National Postdoctoral Program for Innovative Talents [Grant No. BX20200076], China Postdoctoral Science Foundation [Grant No. 2020M670775], Talent Project of Revitalizing Liaoning [Grant No. XLYC1902046], Northeastern University Postdoctoral Funds [Grant No. 20200101], Fundamental Research Funds for the Central Universities [Grant No. N2125017], Program of Introducing Talents of Discipline to Universities [Grant No. B21001] and Elite Program of Southern Taihu Lake.

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hua-Bing Li or Hao Feng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, PC., Li, HB., Feng, H. et al. Improving Cleanliness and Controlling Inclusion Characteristics in High-Nitrogen Stainless Bearing Steels by Optimizing Addition Order and Contents of Mg and Ce. Metall Mater Trans B 53, 1920–1935 (2022). https://doi.org/10.1007/s11663-022-02502-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-022-02502-9

Navigation