Skip to main content
Log in

Effect of Mg Pretreatment and Ce Addition on Cleanliness and Inclusion Evolution in High-Nitrogen Stainless Bearing Steels

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The controls of cleanliness and inclusion characteristics are important issues for the manufacturing of bearing steels. In this work, the method of Mg pretreatment and Ce addition was firstly proposed, and its effect on cleanliness and inclusion evolution in high-nitrogen stainless bearing steels was systematically investigated by microstructure observation and thermodynamic calculation. The results showed that Mg pretreatment and Ce addition decreased O and S contents to 0.0004 and 0.0012 wt pct, respectively. The main inclusions before Mg pretreatment were large-size Al2O3 and elongated MnS. With the increase in Mg content to 0.0079 wt pct, the inclusion evolution processes were Al2O3 → MgO·Al2O3 → MgO, and MnS → MgS. After adding Ce to about 0.015 wt pct, the inclusion evolution processes were Al2O3 → CeAlO3 → Ce–O–S, MgO·Al2O3 → MgO, and MnS → Ce–O–S. Specially, Mg3N2 inclusion formed when Mg content was higher than 0.0040 wt pct, which would induce formation of deleterious AlN. Furthermore, large-size Ce–O–S attached by low-density MgO inclusion tended to float upward because of the decreasing density, thus reducing size and number density of inclusions. However, as Mg content increased to 0.0079 wt pct with same Ce addition, the size and number density of Mg-containing inclusions (MgO, MgS, and Mg3N2) increased. Finally, the optimum Mg content of Mg pretreatment with 0.015 wt pct Ce addition was 0.0026~0.0040 wt pct.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. D.W. Kim: J. Nucl. Mater., 2012, vol. 420, pp. 473–8.

    Article  CAS  Google Scholar 

  2. Y. Han, H. Li, H. Feng, K. Li, Y. Tian, and Z. Jiang: J. Mater. Sci. Technol., 2021, vol. 65, pp. 210–5.

    Article  Google Scholar 

  3. W. Horvath, W. Prantl, H. Stroißnigg, and E.A. Werner: Mater. Sci. Eng. A., 1998, vol. 256, pp. 227–36.

    Article  Google Scholar 

  4. D. Molnár, S. Lu, S. Hertzman, G. Engberg, and L. Vitos: Mater. Charact., 2020, vol. 170, p. 110726.

    Article  Google Scholar 

  5. N.B. Dhokey, A. Upadhye, N. Shah, and K.T. Tharian: Mater. Today: Proc., 2021, vol. 43, pp. 3023–9.

    CAS  Google Scholar 

  6. L. Becker, A. Röttger, J. Boes, S. Weber, and W. Theisen: Addit. Manuf., 2021, vol. 46, p. 102185.

    CAS  Google Scholar 

  7. Y. Han, H. Li, H. Feng, Y. Tian, Z. Jiang, and T. He: Mater. Sci. Eng. A, 2021, vol. 814, p. 141235.

  8. J. Gu, H. Liu, J. Li, Y. Jiang, and R. Chang: J. Iron Steel Res. Int., 2019, vol. 26, pp. 483–9.

    Article  CAS  Google Scholar 

  9. H. Feng, H. Li, P. Lu, C. Yang, Z. Jiang, and X. Wu: Acta Metall. Sin., 2019, vol. 55, pp. 1457–68.

    CAS  Google Scholar 

  10. Y. Qin, J. Li, and M. Herbig: Mater. Charact., 2020, vol. 159, p. 110049.

    Article  CAS  Google Scholar 

  11. H. Feng, Z.H. Jiang, H.B. Li, P.C. Lu, S.C. Zhang, H.C. Zhu, B.B. Zhang, T. Zhang, D.K. Xu, and Z.G. Chen: Corros. Sci., 2018, vol. 144, pp. 288–300.

    Article  CAS  Google Scholar 

  12. H. Feng, H.B. Li, Z.H. Jiang, T. Zhang, N. Dong, S.C. Zhang, P.D. Han, S. Zhao, and Z.G. Chen: Corros. Sci., 2019, vol. 158, p. 108081.

    Article  CAS  Google Scholar 

  13. W. Trojahn, E. Streit, H.A. Chin, and D. Ehlert: Materialwiss. Werkstofftech., 1999, vol. 30, pp. 605–11.

    Article  CAS  Google Scholar 

  14. Z.Y. He, H.B. Li, Z.W. Ni, H.C. Zhu, Z.H. Jiang, H. Feng, and D.S. Mao: Steel Res. Int., 2021, vol. 92, p. 2100197.

    Article  CAS  Google Scholar 

  15. Z.X. Cao, Z.Y. Shi, B. Liang, X.D. Zhang, W.Q. Cao, and Y.Q. Weng: Int. J. Fatigue., 2020, vol. 140, p. 105854.

    Article  CAS  Google Scholar 

  16. C.Y. Yang, P. Liu, Y.K. Luan, D.Z. Li, and Y.Y. Li: Int. J. Fatigue., 2019, vol. 128, p. 105193.

    Article  CAS  Google Scholar 

  17. P.C. Lu, H.B. Li, H. Feng, Z.H. Jiang, H.C. Zhu, Z.Z. Liu, and T. He: Metall. Mater. Trans. B., 2021, vol. 52B, pp. 2210–23.

    Article  Google Scholar 

  18. H. Feng, H.B. Li, Z.Z. Liu, Z.H. Jiang, P.C. Lu, and T. He: Metall. Mater. Trans. B., 2021, vol. 52B, pp. 3777–87.

    Article  Google Scholar 

  19. X. Li, Z. Jiang, X. Geng, M. Chen, and L. Peng: ISIJ Int., 2019, vol. 59, pp. 1552–61.

    Article  CAS  Google Scholar 

  20. X. Wang, G. Li, Y. Liu, F. Wang, and Q. Wang: ISIJ Int., 2021, vol. 61, pp. 1850–9.

    Article  CAS  Google Scholar 

  21. Q. Ren and L. Zhang: Metall. Mater. Trans. B., 2020, vol. 51B, pp. 589–600.

    Article  Google Scholar 

  22. Z. Jiang, G. Xu, Y. Li, H. Li, J. Lv, and Q. Wang: ISIJ Int., 2019, vol. 59, pp. 1234–41.

    Article  CAS  Google Scholar 

  23. F. Chai, C. Yang, H. Su, Y. Zhang, and Z. Xu: J. Iron Steel Res. Int., 2009, vol. 16, pp. 69–74.

    Article  CAS  Google Scholar 

  24. Z. Yu and C. Liu: Metall. Mater. Trans. B., 2019, vol. 50B, pp. 772–81.

    Article  Google Scholar 

  25. Y. Huang, G. Cheng, S. Li, and W. Dai: Steel Res. Int., 2018, vol. 89, p. 1800371.

    Article  Google Scholar 

  26. X. Li, Z. Jiang, X. Geng, M. Chen, and S. Cui: Steel Res. Int., 2019, vol. 90, p. 1900103.

    Article  Google Scholar 

  27. R.M. Geng, J. Li, and C.B. Shi: ISIJ Int., 2021, vol. 61, pp. 1506–13.

    Article  CAS  Google Scholar 

  28. C. Liu, M. Yagi, X. Gao, S. Kim, F. Huang, S. Ueda, and S. Kitamura: Metall. Mater. Trans. B., 2018, vol. 49B, pp. 113–22.

    Article  Google Scholar 

  29. H. Liu, Y. Xie, Q. Yang, Q. Zhou, and J. Ma: Proceedings of 11th International Symposium on High-Temperature Metallurgical Processing, San Diego, USA, 2020, pp. 595–604

  30. X. Wu, S. Wu, C. Yan, X. Ma, Z. Liu, L. Zhu, and Q. Zhang: Metall. Mater. Trans. B., 2021, vol. 52B, pp. 1012–22.

    Article  Google Scholar 

  31. Q. Ren, L. Zhang, Y. Liu, L. Cui, and W. Yang: J. Mater. Res. Technol., 2020, vol. 9, pp. 8197–206.

    Article  CAS  Google Scholar 

  32. C.Y. Yang, Y.K. Luan, D.Z. Li, and Y.Y. Li: J. Mater. Sci. Technol., 2019, vol. 35, pp. 1298–308.

    Article  Google Scholar 

  33. Z.X. Cao, Z.Y. Shi, F. Yu, G.L. Wu, W.Q. Cao, and Y.Q. Weng: Int. J. Fatigue., 2019, vol. 126, pp. 1–5.

    Article  CAS  Google Scholar 

  34. W.C. Jiao, H.B. Li, H. Feng, Z.H. Jiang, L.F. Xia, S.C. Zhang, H.C. Zhu, and W. Wu: Metall. Mater. Trans. B., 2020, vol. 51B, pp. 2240–51.

    Article  Google Scholar 

  35. A. Stiénon, A. Fazekas, J.Y. Buffière, A. Vincent, P. Daguier, and F. Merchi: Mater. Sci. Eng. A., 2009, vol. 513–514, pp. 376–83.

    Article  Google Scholar 

  36. P. Wang, B. Wang, Y. Liu, P. Zhang, Y.K. Luan, D.Z. Li, and Z.F. Zhang: Scripta Mater., 2022, vol. 206, p. 114232.

    Article  CAS  Google Scholar 

  37. G. Zhu, Y. Wu, M. Zhu, and F. Xuan: Int. J. Fatigue., 2021, vol. 153, p. 106501.

    Article  CAS  Google Scholar 

  38. Z. Teng, H. Wu, Z. Huang, and P. Starke: Int. J. Fatigue., 2021, vol. 149, p. 106262.

    Article  CAS  Google Scholar 

  39. H.S. Kim, C. Chang, and H. Lee: Scripta Mater., 2005, vol. 53, pp. 1253–8.

    Article  CAS  Google Scholar 

  40. Q. Ma, C. Wu, G. Cheng, and F. Li: Mater. Today: Proc., 2015, vol. 2, pp. S300–5.

    Google Scholar 

  41. L. Yang and G.G. Cheng: Int. J. Miner. Metall. Mater., 2017, vol. 24, pp. 869–75.

    Article  CAS  Google Scholar 

  42. S. He, G. Chen, Y. Guo, B. Shen, and Q. Wang: Metall. Mater. Trans. B., 2015, vol. 46B, pp. 585–94.

    Article  Google Scholar 

  43. K. Hashimoto, T. Fujimatsu, N. Tsunekage, K. Hiraoka, K. Kida, and E.C. Santos: Mater. Des., 2011, vol. 32, pp. 1605–11.

    Article  CAS  Google Scholar 

  44. K. Wang, T. Yu, Y. Song, H. Li, M. Liu, R. Luo, J. Zhang, F. Fang, and X. Lin: Metall. Mater. Trans. B., 2019, vol. 50B, pp. 1213–24.

    Article  Google Scholar 

  45. J. Lu, G. Cheng, J. Che, L. Wang, and G. Xiong: Met. Mater. Int., 2019, vol. 25, pp. 473–86.

    Article  CAS  Google Scholar 

  46. S. Yang, Q. Wang, L. Zhang, J. Li, and K. Peaslee: Metall. Mater. Trans. B., 2012, vol. 43B, pp. 731–50.

    Article  Google Scholar 

  47. J.H. Park and D.S. Kim: Metall. Mater. Trans. B., 2005, vol. 36B, pp. 495–502.

    Article  CAS  Google Scholar 

  48. W. Ma, Y. Bao, M. Wang, and L. Zhao: ISIJ Int., 2014, vol. 54, pp. 536–42.

    Article  CAS  Google Scholar 

  49. X. Zheng, Q. Wang, M. Zhou, and C. Li: Sci. China Technol. Sci., 2002, vol. 45, pp. 249–54.

    Article  CAS  Google Scholar 

  50. H.Z. Ye, X.Y. Liu, and B. Luan: Mater. Lett., 2004, vol. 58, pp. 2361–4.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was sponsored by the National Natural Science Foundation of China [Grant Nos. U1960203/52004060/U1908223], Fundamental Research Funds for the Central Universities [Grant No. N2125017], China National Postdoctoral Program for Innovative Talents [Grant No. BX20200076], China Postdoctoral Science Foundation [Grant No. 2020M670775], Talent Project of Revitalizing Liaoning [Grant No. XLYC1902046], and Northeastern University Postdoctoral Funds [Grant No. 20200101]. Special thanks are due to the instrumental analysis from Analytical and Testing Centre, Northeastern University.

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua-Bing Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted September 9, 2021; accepted November 24, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, H., Lu, PC., Li, HB. et al. Effect of Mg Pretreatment and Ce Addition on Cleanliness and Inclusion Evolution in High-Nitrogen Stainless Bearing Steels. Metall Mater Trans B 53, 864–876 (2022). https://doi.org/10.1007/s11663-021-02409-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-021-02409-x

Navigation