Skip to main content
Log in

Deformation Characteristics and Influential Parameters of Iron Coke Hot Briquette During Carbonization Process

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Iron coke hot briquette (ICHB) is considered as a typical low-carbon ironmaking charge. Much research has been done on its properties including strength, reactivity and post-reaction strength. However, the properties of ICHB in the carbonization process are also very important, which can affect the choice of reactor and the quality of the product. This paper complements the theory of ICHB during the carbonization process. ICHB was prepared with 20 pct iron ore A (referred to as ICHB-A) and iron ore B (referred to as ICHB-B) to study the effect of the reduction process of iron oxide on the deformation ratio and compressive strength of ICHB during carbonization. The main component of iron ore A is Fe3O4 and that of iron ore B is Fe2O3. The results show that Fe2O3 in ICHB-B is reduced at about 500 °C, and more gas is generated to inhibit the contraction of ICHB. However, the compressive strength of ICHB-B during carbonization is higher than that of ICHB-A, which is believed to be related to the closer bonding between hematite and coal. This study also compared the effect of the ratio of iron ore A on ICHB deformation ratio and compressive strength. The results show that the expansion ratio and shrinkage ratio of ICHB decrease with the increase of iron ore A ratio. By analyzing the deformation characteristics of briquette with the same proportion of Al2O3 during carbonization, it is considered that the influence of different proportion of iron ore A on ICHB deformation ration is mainly caused by the inhibition of inert material on the deformation behavior of coal. The iron ore can enhance the compressive strength of coke, but the reinforcing effect decreases with the increase of iron ore ratio. In addition, the influences of carbonization heating rate, forming pressure and particle size of iron ore on ICHB deformation behavior are also included in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13.
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. H.Y. Wang, J.L. Zhang, G.W. Wang, and X. Jiang: Chin. Metall., 2018, vol. 28, pp. 1–6.

    CAS  Google Scholar 

  2. T. Ariyama and M. Sato: ISIJ Int., 2006, vol. 46, pp. 1736–44.

    Article  CAS  Google Scholar 

  3. W.J. Tian, H. Li, K. Quan, H. Bai, N. Li, and D.Q. Cang: Energy Metall. Ind., 2020, vol. 39, pp. 3–9.

    Google Scholar 

  4. H. Zhang: Metall. Mater. Trans. B., 2019, vol. 50B, pp. 204–09.

    Article  Google Scholar 

  5. Z.L. Zhang, J.L. Meng, L. Guo, and Z.C. Guo: Metall. Mater. Trans. B., 2016, vol. 47B, pp. 476–84.

    Google Scholar 

  6. M. Jampani, J. Gibson, and P.C. Pistorius: Metall. Mater. Trans. B., 2019, vol. 50B, pp. 1290–99.

    Article  Google Scholar 

  7. S. Paul, S.K. Roy, and P.K. Sen: Metall. Mater. Trans. B., 2017, vol. 44B, pp. 20–27.

    Google Scholar 

  8. W. Zhao, M.S. Chu, Z.G. Liu, H.T. Wang, J. Tang, and Z.W. Ying: Metall. Mater. Trans. B., 2019, vol. 50B, pp. 1878–95.

    Article  Google Scholar 

  9. H.T. Wang, M.S. Chu, J.W. Bao, Z.G. Liu, J. Tang, and H.M. Long: Fuel., 2020, vol. 268, pp. 1–11.

    Google Scholar 

  10. S.Z. Shi, Q.W. Dong, X.G. Bi, P. Li, Y.H. Luo, and G.E. Wang: Iron Steel., 2015, vol. 50, pp. 8–12.

    CAS  Google Scholar 

  11. S.Z. Shi, C.Q. Sun, X.G. Bi, H.X. Zhang, Q.W. Dong, and Z.L. Lin: Iron Steel., 2014, vol. 49, pp. 7–12.

    CAS  Google Scholar 

  12. S.Z. Shi, Z.L. Lin, X.G. Bi, P. Li, Y.H. Luo, and G.E. Wang: J. Taiyuan Univ. Tech., 2015, vol. 46, pp. 283–87.

    Google Scholar 

  13. B. Gao, H. Xiao, D.W. Kong, W.Q. Zhang, and J. Li: Iron Steel., 2016, vol. 51, pp. 19–25.

    CAS  Google Scholar 

  14. S.X. Qiu, S.F. Zhang, G.S. Suo, G.B. Qiu, Y. Cheng, M.L. Hu, X. Xiao, and L.Y. Wen: Fuel., 2020, vol. 260, pp. 1–9.

    Article  Google Scholar 

  15. H.T. Wang, M.S. Chu, Z.H. Wang, W. Zhao, Z.G. Liu, J. Tang, and Z.W. Ying: JOM., 2018, vol. 70, pp. 1929–36.

    Article  CAS  Google Scholar 

  16. H.T. Wang, W. Zhao, M.S. Chu, Z.G. Liu, and Z.W. Ying: Powder Tech., 2018, vol. 328, pp. 318–28.

    Article  CAS  Google Scholar 

  17. H.T. Wang, M.S. Chu, W. Zhao, R. Wang, Z.G. Liu, and J. Tang: Ironmak. Steelmak., 2016, vol. 43, pp. 571–80.

    Article  CAS  Google Scholar 

  18. Z.X. Fu, Z.C. Guo, Z.F. Yuan, and Z. Wang: J. Fuel Chem. Tech., 2005, vol. 33, pp. 525–29.

    CAS  Google Scholar 

  19. Y.F. Zhang, H.R. Zhang, F. Tian, and Y.L. Sun: J. Chin. Soc., 2011, vol. 36, pp. 670–75.

    CAS  Google Scholar 

  20. Q. Wang, T.K. Zhang, Y.Q. Zhao, S.Q. He, and Y.F. Zhang: Fuel., 2019, vol. 257, p. 116029.

    Article  CAS  Google Scholar 

  21. S. Nomure: Tetsu-to-Hagane., 2020, vol. 106, pp. 602–10.

    Article  Google Scholar 

  22. I.V. Miroshnichenko, D.V. Miroshnichenko, I.V. Shulga, Y.S. Balaeva, and A.V. Tsygankov: Coke Chem., 2020, vol. 63, pp. 120–25.

    Article  Google Scholar 

  23. S. Nomure: ISIJ Int., 2019, vol. 59, pp. 1512–18.

    Article  Google Scholar 

  24. J.W. Bao, M.S. Chu, H.T. Wang, Z.G. Liu, D. Han, L.G. Cao, J. Guo, and Z.C. Zhao: Metall. Mater. Trans. B., 2020, vol. 51B, pp. 2785–96.

    Article  Google Scholar 

  25. H.T. Wang, M.S. Chu, W. Zhao, Z.G. Liu, and J. Tang: Metall. Mater. Trans. B., 2019, vol. 50B, pp. 324–36.

    Article  Google Scholar 

  26. S. Halder and R.J. Fruehan: Metall. Mater. Trans. B., 2008, vol. 39B, pp. 809–17.

    Article  CAS  Google Scholar 

  27. J.F. Gu: Coal Chem. Ind., 1996, vol. 1, pp. 37–43.

    Google Scholar 

  28. L. Yu, R.S. Xu, W. Wang, H. Dang, H. Zheng, and Q.G. Liu: J. Iron Steel Res., 2019, vol. 31, pp. 515–21.

    CAS  Google Scholar 

  29. D.G. Altman and J.M. Bland: BMJ., 2005, vol. 331, p. 903.

    Article  Google Scholar 

  30. J.W. Bao, M.S. Chu, D. Han, L.G. Cao, Z.G. Liu, and J. Tang: Steel Res. Int., 2019, vol. 90, pp. 1–9.

    Article  Google Scholar 

  31. T. Yamashita, T. Nakada, and K. Nagata: Metall. Mater. Trans. B., 2007, vol. 38B, pp. 185–91.

    Article  CAS  Google Scholar 

  32. P. Kaushik and R.J. Fruehan: Metall. Mater. Trans. B., 2006, vol. 37B, pp. 715–25.

    Article  CAS  Google Scholar 

  33. H.X. Zhang, X.G. Bi, S.Z. S, Q. W, C.Q. Sun, Y.R. Ma, X.M. Cheng, and P. Li: J. Wuhan Univ. Sci. Tech., 2014, vol. 37, pp. 91–96.

  34. R.S. Xu, X.M. Huang, W. Wang, S.L. Deng, H. Zheng, M.M. Song, and F.F. Wang: Metall. Mater. Trans. B., 2020, vol. 51B, pp. 1526–39.

    Article  Google Scholar 

  35. B. Ghosh, B.K. Sahoo, P.K. Jha, K.K. Manjhi, J.N. Sahu, and A.K. Varma: Coke Chem., 2020, vol. 63, pp. 294–302.

    Article  Google Scholar 

  36. N. Chang, Y.P. Gan, and Y.X. Chen: Coal Conv., 2012, vol. 35, pp. 1–5.

    CAS  Google Scholar 

  37. S.X. Qiu, S.F. Zhang, Y. Wu, G.B. Qiu, C.G. Sun, Q.Y. Zhang, J. Dang, L.Y. Wen, M.L. Hu, J. Xu, R.J. Zhu, and C.G. Bai: Fuel., 2018, vol. 232, pp. 374–83.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China-Liaoning Joint Funds (U1808212), the National Natural Science Foundation of China (52074080), the Fundamental Research Funds of the Central Universities of China (N182504010) and Xingliao Talent Plan (XLYC1902118).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mansheng Chu or Yongjie Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, D., Liu, Z., Chu, M. et al. Deformation Characteristics and Influential Parameters of Iron Coke Hot Briquette During Carbonization Process. Metall Mater Trans B 53, 1631–1643 (2022). https://doi.org/10.1007/s11663-022-02473-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-022-02473-x

Navigation