Skip to main content
Log in

Influence of Iron Ore Addition on Metallurgical Reaction Behavior of Iron Coke Hot Briquette

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Utilization of iron coke hot briquette (ICHB) has been considered to be one effective countermeasure to achieve low-carbon blast furnace. Before its actual application, a series of extensive fundamental investigations on the ICHB are required. In this study, the influence of iron ore addition on the metallurgical reaction behavior of ICHB made from carbonizing coal–iron ore composite agglomeration were investigated based on Chinese raw material conditions, and the corresponding mechanisms were revealed. The results show that the addition of iron ore concentrate leads to the degradation of the compressive strength and drum strength of ICHB, but they are maintained at a relatively high level. Furthermore, by increasing the addition ratio of iron ore from 0 to 20 pct, the density of ICHB is enhanced from 1413 to 1637 kg/m3, and the porosity is increased from 8.03 to 12.84 pct, and the optical texture index (OTI) is reduced from 58.1 to 25.3. The phase composition of ICHB mainly consists of C, Fe, SiO2, Fe3O4, and FeO after the addition of the iron ore concentrate. Moreover, the reactivity of ICHB is accelerated from 46.74 to 69.54 pct due to the catalytic effects of metallic iron and iron oxide, which worked as oxygen transfer carriers, while the post-reaction strength is reduced from 74.08 to 36.81 pct. In addition, the starting temperature of the ICHB gasification reaction is decreased remarkably from 919 °C to 839 °C. The activation energy (Ea) for the gasification reaction under nonisothermal conditions is reduced from 312.78 to 249.83 kJ/mol, and the preexponential factor (A) shows a decreasing trend as well. Simultaneously, Ea and A display the kinetic compensation effect and present a good linear relationship.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. X. Xing, H. Rogers, G.Q. Zhang, K. Hockings, P. Zulli, A. Deev, J. Mathieson, and O. Ostrovski: Fuel Process. Technol., 2017, vol. 157, pp. 42-51.

    Article  Google Scholar 

  2. W. Xu, W. Cao, T. Zhu, Y. Li, and B. Wan: Steel Res. Int., 2015, vol. 86, pp. 1063-1072.

    Article  Google Scholar 

  3. Z. Zhang, J. Meng, L. Guo, and Z. Guo: Metall. Mater. Trans. B, 2016, vol. 47B, pp. 467-484.

    Article  Google Scholar 

  4. K. Xu: Iron Steel, 2010, vol. 45, pp. 1-12.

    Google Scholar 

  5. H. M. Ahmed, N. Viswanathan and B. Bjorkman: Steel Res. Int., 2014, vol. 85, pp. 293-306.

    Article  Google Scholar 

  6. P. Kowitwarangkul, A. Babich and D. Senk: Steel Res. Int., 2014, vol. 85, pp. 1501-1509.

    Article  Google Scholar 

  7. C. Y. Narita, M. B. Mourao and C. Takano: Ironmak. Steelmak., 2015, vol. 42, pp. 548-552.

    Article  Google Scholar 

  8. S. Nomura, M. Naito, and K. Yamaguchi: ISIJ Int., 2007, vol. 47, pp. 831-839.

    Article  Google Scholar 

  9. S. Nomura, H. Ayukawa, H. Kitaguchi, T. Tahara, S. Matsuzaki, M. Natio, S. Koizumi, Y. Ogata, T. Nakayama, and T. Abe: ISIJ Int., 2005, vol. 45, pp. 316-324.

    Article  Google Scholar 

  10. H. Yokoyama, K. Higuchi, T. Ito, and A. Oshio: ISIJ Int., 2012, vol. 52, pp. 2000-2006.

    Article  Google Scholar 

  11. A. Takashi, F. Kiyoshi, and F. Hidekazu: JFE Tech. Rep., 2009, vol. 13, pp. 1-6.

    Google Scholar 

  12. M. Sato, H. Matsuno, and K. Ishii: Asia Steel Int. Conf., The Iron and Steel Institute of Japan, Yokohama, Janpan, 2015, pp. 12-13.

    Google Scholar 

  13. H. Wang, W. Zhao, M. Chu, C. Feng, Z. Liu, and J. Tang: J. Iron Steel Res. Int., 2017, vol. 24, pp. 751-769.

    Article  Google Scholar 

  14. K. Takeda, T. Anyashiki, T. Sato, N. Oyama, S. Watakabe, and M. Sato: Steel Res. Int., 2011, vol. 82, pp. 512-520.

    Article  Google Scholar 

  15. K. Higuchi, S. Nomura, K. Kunitomo, H. Yokoyama, and M. Naito: ISIJ Int., 2011, vol. 51, pp. 1308-1315.

    Article  Google Scholar 

  16. S. Nomura, K. Higuchi, K. Kunitomo, and M. Naito: ISIJ Int., 2010, vol. 50, pp. 1388-1395.

    Article  Google Scholar 

  17. Y. Yamazaki, K. Hiraki, T. Kanai, X. Zhang, Y. Matsushita, M. Shoji, H. Aoki, and T. Miura: J. Therm. Sci. Technol., 2011, vol. 6, pp. 278-288.

    Article  Google Scholar 

  18. World Steel Association, Blast Furnace Iron Production 1980-2016, 2017.

  19. H. Wang, M. Chu, W. Zhao, R. Wang, Z. Liu, and J. Tang: Ironmak. Steelmak., 2016, vol. 43, pp. 571-580.

    Article  Google Scholar 

  20. H.T. Wang, M.S. Chu, W. Zhao, and Z.G. Liu: J. Northeastern Univ. Nat. Sci., 2016, vol. 37, pp. 810-814.

    Google Scholar 

  21. H.T. Wang, M.S. Chu, W. Zhao, and Z.G. Liu: J. Northeastern Univ. Nat. Sci., 2016, vol. 37, pp. 1108-1112.

    Google Scholar 

  22. ASTM D5314. Standard method for measuring coke reactivity index (CRI) and coke strength after reaction (CSR).

  23. H.T. Wang, W. Zhao, M.S. Chu, Z.G. Liu, J. Tang, and Z.W. Ying: Powder Technol., 2018, vol. 328, pp. 318-328.

    Article  Google Scholar 

  24. Y. Mochizuki, M. Nishio, N. Tsubouchi, and T. Akiyama: Fuel Process. Technol., 2016, vol. 142, pp. 287-295.

    Article  Google Scholar 

  25. N.A. El-Hussiny, and M.E.H. Shalabi: Powder Technol., 2011, vol. 205, pp. 217-223.

    Article  Google Scholar 

  26. P. Wang, S. Yu, H. Long, R. Wei, Q. Meng, and Y. Zhang: Ironmak. Steelmak., 2017, vol. 44, pp. 595-600.

    Article  Google Scholar 

  27. ASTM D5061. Microscopical determination of the textural components of metallurgical coke.

  28. R.J. Gray, and K.F. Devanney: J. Coal Geol., 1986, vol. 6, pp. 277-297.

    Article  Google Scholar 

  29. Z.Z. Yao, and M.D. Zheng: Cokmaking, Metallurgical Industry Publishers, Beijing, 2012, pp. 35-36.

    Google Scholar 

  30. Q. Lv, Y. Wang, H.S. Xie, X.J. Liu, and Y.J. Li, China Metall., 2016, vol. 26, pp. 8-11.

    Google Scholar 

  31. B.D. Flores, A.G. Borrego, M.A. Diez, G.L.R.D. Silva, V.Zymla, A.C.F. Vilela, and E. Osório: Fuel Process. Technol., 2017, vol. 164, pp. 13-23.

    Article  Google Scholar 

  32. B.D. Flores, A. Guerrero, I.V. Flores, A.G. Borrego, M.A. Díez, E. Osório, and A.C.F. Vilela: Fuel Process. Technol., 2017, vol. 155, pp. 238-245.

    Article  Google Scholar 

  33. Y. Tanaka, T. Ueno, K. Okumura, and S. Hayashi: ISIJ Int., 2011, vol. 51, pp. 1240-1246.

    Article  Google Scholar 

  34. S. Nomura, H. Terashima, E. Sato, and M. Naito: ISIJ Int., 2007, vol. 47, pp. 823-830.

    Article  Google Scholar 

  35. J.P. Wang, Q.A. Xie, L.Q. Yan, J.A. Chen, J.S. Hu, and Y.H. Liang: Coal Quality Technol., 2013, vol. 5, pp. 1-6.

    Google Scholar 

  36. J.L. Zhang, J. Guo, G.W. Wang, L.M. Zhang, T. Xu, and C.L. Zheng: Iron Steel, 2016, vol. 51, pp. 22-29.

    Google Scholar 

  37. C. Barriocanal, M.A. Díez, R. Alvarez, M.D. Casal, and C.S. Canga, Anal. Appl. Pyrolysis, 2003, vol. 67, pp. 23-40.

    Article  Google Scholar 

  38. M.J.G. Alonso, D. Alvarez, A.G. Borrego, R. Menéndez, and G. Marbán: Energy Fuel, 2001, vol. 15, pp. 413-428.

    Article  Google Scholar 

  39. K. Watanabe, S. Ueda, R. Inoue, and T. Ariyama: ISIJ Int., 2010, vol. 50, pp. 524-530.

    Article  Google Scholar 

  40. Y. Yamamoto, Y. Kashiwaya, S. Miura, M. Nishimura, K. Katou, S. Nomura, M. Kubota, K. Kunimoto, and M. Naito, Tetsu-to-Hagané, 2010, vol. 96, pp. 297-304.

    Article  Google Scholar 

  41. A.P. Dhupe, A.N. Gokarn, and L.K. Doraiswamy: Fuel, 1991, vol. 70, pp. 839-844.

    Article  Google Scholar 

  42. P. Li, X.G. Bi, S.Z. Shi, H.X. Zhang, and J.D. Zhou: J. Iron Steel Res., 2015, vol. 27, pp. 10-15.

    Google Scholar 

  43. X.L. Wang: Ferrous Metallurgy (Ironmaking), Metallurgical Industry Press, Beijing, 2008, pp. 200-201.

    Google Scholar 

  44. H. Shi, J. Huang, and L.R. Song: J. Iron Steel Res., 2016, vol. 28, pp. 35-39.

    Google Scholar 

  45. A.O. Oyedun, C.Z. Tee, S. Hanson, and C.W. Hui: Fuel Process. Technol., 2014, vol. 128, pp. 471-481.

    Article  Google Scholar 

  46. C. Popescu, and E. Segal: Int. J. Chem. Kinet., 1998, vol. 30, pp. 313-327.

    Article  Google Scholar 

  47. X.J. Zhang, D.J. Wiebren, and P. Fernando: Biomass Bioenergy, 2009, vol. 33, pp. 1435-1441.

    Article  Google Scholar 

  48. K.J. Li, J.L. Zhang, Z.J. Liu, X.J. Ning, and T.J. Yang: Ind. Eng. Chem. Res., 2014, vol. 53, pp. 5737-5748.

    Article  Google Scholar 

  49. A.W. Coats, and J.P. Redfern: Nature, 1964, vol. 201, pp. 68-69.

    Article  Google Scholar 

  50. W.J. Duan, Q.B. Yu, H.Q. Xie, Q. Qin: Energy, 2017, vol. 135, pp. 317-326

    Article  Google Scholar 

  51. J.G. Shao, R. Yan, H.P. Chen, H.P. Yang, and D.H. Lee: Fuel Process. Technol., 2010, vol. 91, pp. 1113-1118.

    Article  Google Scholar 

  52. M.V. Kok: Fuel Process. Technol., 2011, vol. 92, pp. 1026-1031.

    Article  Google Scholar 

  53. A.M. Cortés, and A.V. Bridgwater: Fuel Process. Technol., 2015, vol. 138, pp. 184-193.

    Article  Google Scholar 

  54. S. Vyazovkin, A.K. Burnham, J.M. Criado, L.A. Pérez-Maqueda, C. Popescu, and N. Sbirrazzuoli: Thermochim. Acta, 2011, vol. 520, pp. 1-19.

    Article  Google Scholar 

  55. Y.T. Kim, D.K. Seo, and J. Hwang: Energy Fuels, 2011, vol. 25, pp. 5044-5054.

    Article  Google Scholar 

  56. B.B. Uzun, and E. Yaman: J. Energy Inst., 2016, vol. 9, pp. 1-13.

    Google Scholar 

  57. G. Skodras, G. Nenes, and N. Zafeiriou: Appl. Therm. Eng., 2015, vol. 74, pp. 111-118.

    Article  Google Scholar 

  58. M.C. Wilson, and A.K. Galwey: Nature, 1973, vol. 243, pp. 402-404.

    Article  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the National Natural Science Foundation of China (U1808212), the China Postdoctoral Science Foundation (2016M601321), and the Fundamental Research Funds of the Central Universities of China (N162503003).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mansheng Chu or Zhenggen Liu.

Additional information

Manuscript submitted December 28, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Chu, M., Zhao, W. et al. Influence of Iron Ore Addition on Metallurgical Reaction Behavior of Iron Coke Hot Briquette. Metall Mater Trans B 50, 324–336 (2019). https://doi.org/10.1007/s11663-018-1481-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-018-1481-7

Navigation