Skip to main content
Log in

Formation and Precipitation Mechanism of TiN Inclusion in Mg-Treated GCr15 Bearing Steel

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

TiN inclusions in both original and Mg-treated GCr15 bearing steels have been observed. The results of the observation show that most of the TiN inclusions observed in original the GCr15 bearing steel are single particles, while many of the TiN inclusions in Mg-treated GCr15 bearing steel are TiN–MgO, TiN–MgS, or MgO–MgS–TiN. In Mg-treated GCr15 bearing steel, the TiN inclusions were refined by MgO, MgS, or MgO–MgS inclusions, and the number of TiN inclusions with sizes below 3 μm obviously increased. Thermodynamic calculations indicated that the TiN inclusions precipitated in the mushy zone in both the original and Mg-treated GCr15 bearing steel. The order of precipitation of the inclusions in the Mg-treated GCr15 bearing steel is MgO > MgS > TiN. To understand the formation mechanism of TiN inclusions at the atomic scale, the DFT method was used to investigate the structures and thermodynamic properties of the pre-nucleation metastable phase (TiN)n clusters and the interface between TiN and MgO (or MgS). It can be concluded from the calculation results that the formation of TiN inclusion crystal is controlled by the formation of (TiN)n clusters, and TiN inclusions are more easily formed in a heterogeneous way than in a homogeneous way. TiN inclusions were formed by the homogeneous transformation of the (TiN)n clusters (n > 20), while TiN inclusions on the surface of MgO were formed by the transformation of the (TiN)n clusters (n > 3), and TiN inclusions on the surface of MgS were formed by the transformation of the (TiN)n clusters (n > 4).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Q.R. Tian, G.C. Wang, D.L. Shang, H. Lei, X.H. Yuan, Q. Wang, and J. Li: Metall. Mater. Trans. B, 2018, vol. 493B, pp. 137–3150.

    Google Scholar 

  2. Q.R. Tian, G.C. Wang, Y. Zhao, J. Li, and Q. Wang: Metall. Mater. Trans. B, 2018, vol. 49B, pp. 1149–64.

    Article  Google Scholar 

  3. Y.L. Jin and S.L. Du: Ironmak. Steelmak., 2018, vol. 45, pp. 224–29.

    Article  CAS  Google Scholar 

  4. M. Zhou and H. Yu: Int. J. Miner. Metall. Mater., 2012, vol. 19, pp. 805–11.

    Article  CAS  Google Scholar 

  5. C.X. Shi, G.G. Cheng, Z.J. Li, and P. Zhao: J. Iron. Steel Res. Int., 2008, vol. 15, pp. 57–60.

    Article  CAS  Google Scholar 

  6. X. Yuan, Y. Xiao, G. Wang, et al.: Comput. Mater. Sci., 2021, vol. 197, p. 110570.

    Article  CAS  Google Scholar 

  7. L. Yang, G. Cheng, S. Li, et al.: ISIJ Int., 2015, vol. 55(9), pp. 1901–1905.

    Article  CAS  Google Scholar 

  8. W.J. Ma, Y.P. Bao, L.H. Zhao, and M. Wang: Int. J. Miner. Met. Mater., 2014, vol. 21, pp. 234–39.

    Article  CAS  Google Scholar 

  9. S. K. Michelic: Scanning, 2017, vol. 2017, Article ID 2326750.

  10. Q. Tian, G. Wang, D. Shang, et al.: Metall. Mater. Trans. B, 2018, vol. 49B, pp. 3137–50.

    Article  Google Scholar 

  11. M. Lee and J.H. Park: Metall. Mater. Trans. B, 2018, vol. 49B, pp. 877–93.

    Article  Google Scholar 

  12. H.Y. Liu, H.L. Wang, L. Li, J.Q. Zheng, Y.H. Li, and X.Y. Zeng: Ironmak. Steelmak., 2011, vol. 38, pp. 53–58.

    Article  Google Scholar 

  13. Q. Tian, G. Wang, Y. Zhao, et al.: Metall Mater Trans B, 2018, vol. 49B, pp. 1149–64.

    Article  Google Scholar 

  14. J. Xie, D. Zhang, Q. Yang, J. An, Z. Huang, and J. Fu: Ironmak Steelmak., 2019, vol. 46, pp. 564–73.

    Article  CAS  Google Scholar 

  15. Z.H. Jiang, C. Wang, W. Gong, and H.D. Wang: Ironmak. Steelmak., 2015, vol. 42, pp. 669–74.

    Article  Google Scholar 

  16. T. Zhang, C. Liu, and M. Jiang: Metall. Mater. Trans. B, 2016, vol. 47B, pp. 2253–62.

    Article  Google Scholar 

  17. X. Zou, D. Zhao, J. Sun, C. Wang, and H. Matsuura: Metall. Mater. Trans. B, 2018, vol. 49B, pp. 481–89.

    Article  Google Scholar 

  18. K. Kimura, S. Fukumoto, G. Shigesato, and A. Takahashi: ISIJ Int., 2013, vol. 53, pp. 2167–75.

    Article  CAS  Google Scholar 

  19. T. Qu, C. Zhang, D. Wang, J. Zhan, J. Tian, and D. Hou: Metals, 2020, vol. 10, p. 755.

    Article  CAS  Google Scholar 

  20. M. Li, H. Matsuura, and F. Tsukihashi: Metall Mater Trans B, 2019, vol. 50B, pp. 1814–21.

    Article  Google Scholar 

  21. K. Zhu, J. Yang, R. Wang, and Z. Yang: J. Iron Steel Res. Int., 2011, vol. 18, pp. 60–64.

    Article  CAS  Google Scholar 

  22. H. Ohta and H. Suito: ISIJ Int., 2007, vol. 47, pp. 197–206.

    Article  CAS  Google Scholar 

  23. L. Cao, G. Wang, Y. Xiao and R. Yang: J. Iron Steel Res. Int., 2021 (in press).

  24. J.P. Perdew, K. Burke, and M. Ernzerhof: Phys. Rev. Lett., 1996, vol. 77, pp. 3865–68.

    Article  CAS  Google Scholar 

  25. B. Delley: J. Phys. Chem. A, 2006, vol. 110, pp. 13632–39.

    Article  CAS  Google Scholar 

  26. Y. Xiao, H. Lei, H. Zhang, et al.: Phys. Chem. Chem. Phys., 2019, vol. 21, pp. 13847–55.

    Article  CAS  Google Scholar 

  27. Y. Xiao, H. Lei, B. Yang, et al.: RSC Adv., 2018, vol. 8, pp. 38336–45.

    Article  CAS  Google Scholar 

  28. Y. Xiao, G. Wang, H. Lei, et al.: J. Alloys Compd., 2019, vol. 813, p. 152243.

    Article  Google Scholar 

  29. J. Kim, S. Jhi, and K.R. Lee: J. Appl. Phys., 2011, vol. 110, p. 083501.

    Article  Google Scholar 

  30. R. Zhang, T. Lee, B. Yu, C. Stampfl, and A. Soon: Phys. Chem. Chem. Phys., 2012, vol. 14, pp. 16552–57.

    Article  CAS  Google Scholar 

  31. S.V. Dudiy and B.I. Lundqvist: Phys. Rev. B, 2004, vol. 69, p. 125421.

    Article  Google Scholar 

  32. D. Zhou, S. Jin, Y. Li, F. Qiu, F. Deng, J. Wang, and Q. Jiang: CrystEngComm, 2013, vol. 15, pp. 643–49.

    Article  Google Scholar 

  33. N. Schonberg: Acta Chem. Scand., 1954, vol. 8, pp. 226–39.

    Article  CAS  Google Scholar 

  34. K. Inoue, N. Ishikawa, I. Ohnuma, H. Ohtani, and K. Ishida: ISIJ Int., 2001, vol. 41, pp. 175–82.

    Article  CAS  Google Scholar 

  35. W.H. Qi and M.P. Wang: J. Mater. Sci. Lett., 2002, vol. 21(22), pp. 1743–45.

    Article  CAS  Google Scholar 

  36. X. Yuan, Y. Xiao, G. Wang, and L. Zhang: Comput. Mater. Sci., 2021, vol. 197, p. 110570.

    Article  CAS  Google Scholar 

  37. J. Fu, J. Zhu, L. Di, F.S. Tong, D.L. Liu, and Y.L. Wang: Acta Metall. Sin., 2000, vol. 36, pp. 801–804.

    CAS  Google Scholar 

  38. X. Huang: Iron and Steel Metallurgy Principle, 4th ed. Metallurgical Industry Press, Beijing, 2014.

    Google Scholar 

  39. H. Suito and H. Ohta: ISIJ Int., 2006, vol. 46(1), pp. 33–41.

    Article  CAS  Google Scholar 

  40. Y. Liu, L.F. Zhang, H.J. Duan, Y. Zhang, Y. Luo, and A.N. Conejo: Metall. Mater. Trans. A., 2016, vol. 47A, pp. 3015–25.

    Article  Google Scholar 

  41. L. Yang, G. Cheng, S. Li, M. Zhao, and G. Feng: ISIJ Int., 2015, vol. 55, pp. 1693–98.

    Article  CAS  Google Scholar 

  42. S. Luo, B.Y. Wang, Z.H. Wang, D.B. Jiang, W. Wang, and M.Y. Zhu: ISIJ Int., 2017, vol. 57, pp. 2000–2009.

    Article  CAS  Google Scholar 

  43. J.H. Park, S.B. Lee, and H.R. Gaye: Metall. Mater. Trans. B, 2008, vol. 39B, pp. 853–61.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the National Natural Science Foundation of China (Grant No. 51874170) for supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo-cheng Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted September 1, 2021; accepted December 10, 2021.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (PDF 1323 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, Yy., Cao, L., Wang, Gc. et al. Formation and Precipitation Mechanism of TiN Inclusion in Mg-Treated GCr15 Bearing Steel. Metall Mater Trans B 53, 916–930 (2022). https://doi.org/10.1007/s11663-021-02415-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-021-02415-z

Navigation