Skip to main content
Log in

Study on the Initial Formation Behavior of Argon Bubbles in Porous Permeable Brick in Tundishes

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Porous permeable bricks have been widely used in the process of argon bubbling in tundishes due to their gas permeability, stable bubble formation ability and their refractory performance. In this article, the particle packing method was used to prepare porous permeable bricks with different critical sizes of the aggregate particles. Through characterization of the porous permeable brick microstructure, the bubble formation behaviors and bubble size distributions from the porous permeable bricks were analyzed by water model experiments. Correlations of the number of activated pores and the bubble size with the pore structure parameters and pressure gradient were then studied based on a gray system theory approach. The results showed that when the gas flow rate was low, the sizes of the bubbles in a bubble group presented a bimodal or multimodal distribution. As the gas flow rate increased, the pressure gradient inside the porous permeable bricks and the number of activated pores increased. Simultaneously, the size range of the bubbles increased and changed to a normal distribution. Porous permeable bricks with small critical aggregate sizes can produce many small bubbles. Among the parameters considered, the gas permeability directly affected the pressure gradient inside the porous permeable bricks and had the maximum correlation coefficient with the number of activated pores. The pore size distribution was the key factor affecting the size distribution and Sauter mean diameter (SMD) of a bubble group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. X.F. Qin, C.G. Cheng, Y. Li, C.M. Zhang, and Y. Jin: Iron Steel., 2016, vol. 54(8), pp. 107–15.

    Google Scholar 

  2. M.J. Zhang, H.Z. Wang, H.Z. Gu, A. Huang, and R.J. Zhu: Steelmaking., 2005, vol. 21(06), pp. 53–6.

    Google Scholar 

  3. Q. Gao, L. Dong, L.Z. Cheng, H.W. Gao, and K.R. Guo: Acta. Metall. Sin., 1987, vol. 01, pp. 144–6.

    Google Scholar 

  4. X.F. Qin, C.G. Chang, Y. Li, C.M. Zhang, J.L. Zhang, and Y. Jin: Metals., 2019, vol. 9(2), pp. 116–31.

    Article  Google Scholar 

  5. A. Cwudzinski: J. S. Afr. Inst. Min. Metall., 2018, vol. 118(5), pp. 545–54.

    CAS  Google Scholar 

  6. S. Chatterjee, D.H. Li, and K. Chattopadhyay: Metall. Mater. Trans. B., 2018, vol. 49B, pp. 756–66.

    Article  Google Scholar 

  7. C.E. Aguilar-Rodriguez, J.A. Ramos-Banderas, E. Torres-Alonso, G. Solorio-Diaz, and C.A. Hernandez-Bocanegra: Metallurgist., 2018, vol. 61(11), pp. 1055–66.

    Article  CAS  Google Scholar 

  8. A. Cwudzinski: Metall. Res. Technol., 2018, vol. 115(1), pp. 101–8.

    Article  Google Scholar 

  9. S.G. Zheng and M.Y. Zhu: Iron Steel., 2008, vol. 43(6), pp. 25–9.

    CAS  Google Scholar 

  10. L.H. Wang, H.G. Lee, and P.C. Hayes: ISIJ Int., 1996, vol. 36(1), pp. 7–16.

    Article  CAS  Google Scholar 

  11. H.L. Yang, P. He, and Y.C. Zhai: ISIJ Int., 2014, vol. 54(3), pp. 578–81.

    Article  CAS  Google Scholar 

  12. S. Chang, X.K. Cao, C.H. Hsin, Z.S. Zou, M. Isac, and R.I.L. Guthrie: ISIJ Int., 2016, vol. 56(7), pp. 1188–97.

    Article  CAS  Google Scholar 

  13. S.C. Koria and S.C. Srivastava: Steel Res. Int., 1999, vol. 70(6), pp. 221–6.

    Article  CAS  Google Scholar 

  14. A. Cwudzinski: Steel Res. Int., 2017, vol. 88(9), p. 1600484.

    Article  Google Scholar 

  15. D.F. Chen, X. Xie, M.J. Long, M. Zhang, L.L. Zhang, and Q. Liao: Metall. Mater. Trans. B., 2014, vol. 45B, pp. 392–8.

    Article  Google Scholar 

  16. T. Maria, P. Arnis, and P. Herbert: Steel Res. Int., 2019, vol. 90, p. 1800639.

    Article  Google Scholar 

  17. H. Gerhard and T. Maria: Steel Res. Int., 2019, vol. 90, p. 1800642.

    Article  Google Scholar 

  18. S. Chang, S. Ge, Z.S. Zong, M.M. Isac, and R.I.L. Guthrie: Steel Res. Int., 2017, vol. 88, p. 1600328.

    Article  Google Scholar 

  19. L.M. Li, Z.Q. Liu, B.K. Li, H. Matsuura, and F. Tsukihashi: ISIJ Int., 2015, vol. 55(7), pp. 1337–46.

    Article  CAS  Google Scholar 

  20. R.D. Morales, F.A. Calderon-Hurtado, K. Chattopadhyay, and S.J.G. Guarneros: Metall. Mater. Trans. B., 2020, vol. 51B, pp. 628–48.

    Article  Google Scholar 

  21. W.J. Liu, J.T.N. Lee, X.P. Guo, A.K. Silaen, and C.Q. Zhou: Steel Res. Int., 2019, vol. 90, p. 1800396.

    Article  Google Scholar 

  22. P. Snabre and F. Magnifotcham: Phys. Condens. Matter., 1998, vol. 4(3), pp. 369–77.

    CAS  Google Scholar 

  23. N.Z. Wang, X. Chen, J.Y. Yuan, G.Q. Quan, Y.X. Li, H.W. Zhang, and Y. Liu: Metall Mater. Trans. B., 2016, vol. 47B, pp. 3362–74.

    Article  Google Scholar 

  24. H. Bai and B.G. Thomas: Metall. Mater. Trans. B., 2001, vol. 32B, pp. 1143–59.

    Article  CAS  Google Scholar 

  25. J.A. Simmons, J.E. Sprittles, and Y. Shikhmurzaev: J. Mech. Theoret. Appl., 2015, vol. 53, pp. 24–36.

    Google Scholar 

  26. Q.H. Wang, Y.B. Li, S.J. Li, R.F. Xiang, N.N. Xu, and S. OuYang: Mater. Lett., 2017, vol. 197, pp. 48–51.

    Article  CAS  Google Scholar 

  27. X. Xiong, Z.F. Wang, X.T. Wang, H. Liu, and Y. Ma: J. Am. Ceram. Soc., 2019, vol. 103(3), pp. 2137–45.

    Article  Google Scholar 

  28. K. Koide, S. Kato, Y. Tanaka, and H. Kubota: J. Chem. Eng. Jpn., 1968, vol. 1(1), pp. 51–6.

    Article  CAS  Google Scholar 

  29. T. Miyahara and A. Tanaka: J. Chem. Eng. Jpn., 1997, vol. 30(2), pp. 353–5.

    Article  CAS  Google Scholar 

  30. A.A. Mouza, G.K. Dalakoglou, and V.P. Spiros: Chem. Eng. Sci., 2005, vol. 60(5), pp. 1465–75.

    Article  CAS  Google Scholar 

  31. N.A. Kazakis, A.A. Mouza, and S.V. Paras: Chem. Eng. J., 2008, vol. 137(2), pp. 265–81.

    Article  CAS  Google Scholar 

  32. T. Loimer, G. Machu, and U. Schaflinger: Chem. Eng. Sci., 2004, vol. 59(4), pp. 809–18.

    Article  CAS  Google Scholar 

  33. L.F. Zhang, J. Aoki, and B.G. Thomas: Metall. Mater. Trans. B., 2006, vol. 37B, pp. 361–79.

    Article  CAS  Google Scholar 

  34. W. Chen, Y. Ren, L.F. Zhang, and P.R. Scheller: JOM., 2019, vol. 71(3), pp. 1158–68.

    Article  CAS  Google Scholar 

  35. J.W.K. Chan and T.K.L. Tong: Mater. Des., 2007, vol. 28(5), pp. 1539–46.

    Article  CAS  Google Scholar 

  36. J.W.K. Chan: Int. J. Prod. Res., 2008, vol. 46(11), pp. 2889–912.

    Article  Google Scholar 

Download references

Acknowledgments

This work has been supported by the National Natural Science Foundation of China (Nos. 51874215 and 51974213).

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changgui Cheng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted May 19, 2021; accepted November 22, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, X., Cheng, C., Li, Y. et al. Study on the Initial Formation Behavior of Argon Bubbles in Porous Permeable Brick in Tundishes. Metall Mater Trans B 53, 1224–1235 (2022). https://doi.org/10.1007/s11663-021-02404-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-021-02404-2

Navigation