Skip to main content
Log in

Preparation of Aluminum Dross Microporous Bricks and the Pore Formation Mechanisms

  • Recycling End of Life Products Containing Aluminium
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Considering the harmful impact of the disposing of secondary aluminum dross (SAD) on the environment, we suggest producing aluminum dross microporous bricks (ADMBs) from SAD as a solution. These bricks possess thermal insulation properties, and we conducted research to study the impact of carbon powder particle sizes and sintering temperatures on their compressive strength, thermal conductivity, bulk density, and porosity. Additionally, we examined the mechanism of pore formation in the ADMBs. The results showed that the best overall performance of the prepared ADMBs was achieved with a porosity of 55.87%. There are three main types of internal pores. The first type is formed by the removal of carbon powder, which is generally formed near the surface layer of the ADMBS, and the hole size is related to the particle size of the carbon powder. The second type is formed by the expansion of holes, generally formed in the center of the ADMBS, the cavity size of which is related to the sintering temperature. The third type is formed by the expansion of cracks and is generally formed near the location where the original carbon powder was present.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M.S. Satish Reddy, and D. Neeraja, Sadhana 43, 1 https://doi.org/10.1007/s12046-018-0866-2 (2018).

    Article  Google Scholar 

  2. B.B. Qiu, N. Deng, Y.F. Zhang, and H.J. Wan, Asia-Pac. J. Chem. Eng. 13(1), e2150 https://doi.org/10.1002/apj.2150 (2018).

    Article  Google Scholar 

  3. M. Balakrishnan, V.S. Batra, J.S.J. Hargreaves, and I.D. Pulford, Green Chem. 13(1), 16 https://doi.org/10.1039/c0gc00685h (2011).

    Article  Google Scholar 

  4. S. Fukumoto, T. Hookabe, and H. Tsubakino, J. Mater. Sci. 35(11), 2743 https://doi.org/10.1023/A:1004718329003 (2000).

    Article  Google Scholar 

  5. H.L. Shen, B. Liu, C. Ekberg, and S.G. Zhang, Sci. Total Environ. 760, 143968 https://doi.org/10.1016/j.scitotenv.2020.143968 (2021).

    Article  Google Scholar 

  6. P.E. Tsakiridis, J. Hazard. Mater. 217, 1 https://doi.org/10.1016/j.jhazmat.2012.03.052 (2012).

    Article  Google Scholar 

  7. J.P. Hong, J. Wang, H.Y. Chen, B.D. Sun, J.J. Li, and C. Chen, Trans. Nonferrous Met. Soc. China. 20(11), 2155 https://doi.org/10.1016/S1003-6326(09)60435-0 (2011).

    Article  Google Scholar 

  8. A. Gil, and S.A. Korili, Chem. Eng. J. 289, 74 https://doi.org/10.1016/j.cej.2015.12.069 (2016).

    Article  Google Scholar 

  9. L.J. Hou, T.Y. Liu, and A.X. Lu, Trans. Nonferrous Met. Soc. China 27(3), 591 https://doi.org/10.1016/S1003-6326(17)60066-9 (2017).

    Article  Google Scholar 

  10. M. Mahinroosta, and A. Allahverdi, J. Clean. Prod. 179, 93 https://doi.org/10.1016/j.jclepro.2018.01.079 (2018).

    Article  Google Scholar 

  11. P.E. Tsakiridis, P. Oustadakis, and S. Agatzini-Leonardou, Waste Biomass Valoriz. 5(6), 973 https://doi.org/10.1007/s12649-014-9313-8 (2014).

    Article  Google Scholar 

  12. M. Gallardo-Heredia, J.M. Almanza-Robles, R.X. Magallanes-Rivera, D.A. Cortes-Hernandez, J.C. Escobedo-Bocardo, and U. Avila-Lopez, Mater. Struct. 50(1), 1 https://doi.org/10.1617/s11527-016-0960-z (2017).

    Article  Google Scholar 

  13. A.P. Li, H.J. Zhang, and H.M. Yang, Ceram. Int. 40(8), 12585 https://doi.org/10.1016/j.ceramint.2014.04.069 (2014).

    Article  Google Scholar 

  14. S.O. Adeosun, E.I. Akpan, and M.O. Dada, JOM. 66(11), 2253 https://doi.org/10.1007/s11837-014-1179-5 (2014).

    Article  Google Scholar 

  15. A. Gutierrez, L. Miro, A. Gil, J. Rodriguez-Aseguinolaza, C. Barreneche, N. Calvet, X. Py, A.I. Fernandez, M. Grageda, S. Ushak, and L.F. Cabeza, Renew. Sustain. Energy Rev. 59, 763 https://doi.org/10.1016/j.rser.2015.12.071 (2016).

    Article  Google Scholar 

  16. M. Mahinroosta, and A. Allahverdi, J. Environ. Manag. 223, 452 https://doi.org/10.1016/j.jenvman.2018.06.068 (2018).

    Article  Google Scholar 

  17. A. Meshram, and K.K. Singh, Resour. Conserv. Recycl. 130, 95 https://doi.org/10.1016/j.resconrec.2017.11.026 (2018).

    Article  Google Scholar 

  18. G.Y. Zheng, C.L. Liu, J.P. Xia, and J. Yang, Phosphorus, Sulfur, Silicon Relat. Elem. 195(7), 536 https://doi.org/10.1080/10426507.2020.1723589 (2020).

    Article  Google Scholar 

  19. S.K. Zhou, M. Wang, H.Z. Tan, X.B. Wang, W.J. Yang, X.H. Xiong, and F.X. Yang, Fuel 273, 117701 https://doi.org/10.1016/j.fuel.2020.117701 (2020).

    Article  Google Scholar 

  20. K.P. Huang, and X.M. Yi, JOM. https://doi.org/10.1007/s11837-022-05560-1 (2022).

    Article  Google Scholar 

  21. W.T. Zhou, F.M. Yang, R.J. Zhu, G. Dai, W.J. Wang, W.L. Wang, X.L. Guo, J.Y. Jiang, and Z.M. Wang, Constr. Build. Mater. 263, 120021 https://doi.org/10.1016/j.conbuildmat.2020.120021 (2020).

    Article  Google Scholar 

  22. T. Aydin, J. Aust. Ceram. Soc. 54(1), 169 https://doi.org/10.1007/s41779-017-0138-3 (2018).

    Article  Google Scholar 

  23. R.F. Li, Y. Zhou, C.W. Li, S.B. Li, and Z.Y. Huang, Constr. Build. Mater. 213, 43 https://doi.org/10.1016/j.conbuildmat.2019.04.040 (2019).

    Article  Google Scholar 

  24. A. Yaras, M. Sutcu, O. Gencel, and E. Erdogmus, Constr. Build. Mater. 224, 57 https://doi.org/10.1016/j.conbuildmat.2019.07.080 (2019).

    Article  Google Scholar 

  25. Z.Y. Tian, A. Abou-Chakra, S. Geoffroy, and D. Kondo, Eur. J. Environ. Civ. Eng. 26(2), 547 https://doi.org/10.1080/19648189.2019.1666303 (2022).

    Article  Google Scholar 

  26. H. Kurmus, and A. Mohajerani, Constr. Build. Mater. 283, 122755 https://doi.org/10.1016/j.conbuildmat.2021.122755 (2021).

    Article  Google Scholar 

  27. J.Z. Man, W.Y. Gao, S. Yan, G.S. Liu, and H.S. Hao, Constr. Build. Mater. 156, 1035 https://doi.org/10.1016/j.conbuildmat.2017.09.021 (2017).

    Article  Google Scholar 

  28. C. Arslan, O. Gencel, I. Borazan, M. Sutcu, and E. Erdogmous, Constr. Build. Mater. 300, 124298 https://doi.org/10.1016/j.conbuildmat.2021.124298 (2021).

    Article  Google Scholar 

  29. M. Sutcu, J.J.C. Diaz, F.P.A. Rabanal, O. Gencel, and S. Akkurt, Energy Build. 75, 96 https://doi.org/10.1016/j.enbuild.2014.02.006 (2014).

    Article  Google Scholar 

  30. M. Sutcu, S. Ozturk, E. Yalamac, and O. Gencel, J. Environ. Manag. 181, 185 https://doi.org/10.1016/j.jenvman.2016.06.023 (2016).

    Article  Google Scholar 

  31. X.F. Wang, and X. Zhang, Materials 13(12), 2701 https://doi.org/10.3390/ma13122701 (2020).

    Article  Google Scholar 

  32. C. Bories, M.E. Borredon, E. Vedrenne, and G. Vilarem, J. Environ. Manag. 143, 186 https://doi.org/10.1016/j.jenvman.2014.05.006 (2014).

    Article  Google Scholar 

  33. S. Yao, S.L. Wu, H. Zhou, B. Song, M.Y. Kou, and R.T. Xu, Ironmak. Steelmak. 47(3), 263 https://doi.org/10.1080/03019233.2019.1685757 (2020).

    Article  Google Scholar 

  34. L.F. Du, S.M. Yang, X.W. Zhu, J. Jiang, Q. Hui, and H.L. Du, Mater Sci. 53(13), 9567 https://doi.org/10.1007/s10853-018-2267-7 (2018).

    Article  Google Scholar 

  35. J.J. Zhang, B. Liu, S. Zhao, H.L. Shen, J. Liu, and S.G. Zhang, Constr. Build. Mater. 262, 120781 https://doi.org/10.1016/j.conbuildmat.2020.120781 (2020).

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by Zhaoqing Dazheng Aluminum Co.'s Technology Development Project [grant number K4050722004], and Second Batch of Xijiang Innovation and Entrepreneurship Team in Zhaoqing City [Grant Number 2017A0109004].

Author information

Authors and Affiliations

Authors

Contributions

ZJZ: Conception, Manuscript Composition, Visualization. SZL: Experimental Design. LLW: Carrying out Measurements, Data curation. MKL: Data curation. KPH: Writing-review & editing. WW: Supervision. JL: Project administration, Fundings. XMY: Conception, Writing-review & editing, Supervision.

Corresponding author

Correspondence to X. M. Yi.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1338 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z.J., Li, S.Z., Wang, L.L. et al. Preparation of Aluminum Dross Microporous Bricks and the Pore Formation Mechanisms. JOM 75, 4701–4713 (2023). https://doi.org/10.1007/s11837-023-05864-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-023-05864-w

Navigation