Skip to main content
Log in

Optimization of Mg Blowing Agent Content for Foaming Aluminum

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Mg-based blowing agents exhibit the potential to yield aluminum foams with better structure and properties than those achieved by using conventional blowing agents. However, all the studies to date used a high amount of such blowing agents (e.g., 15 wt pct Mg) for foaming aluminum. In this study, we investigate the minimum amount of Mg blowing agent required for foaming. Al-Si13-MgX (X = 2.5–15 wt pct) alloy foams were produced employing the powder metallurgy route where Mg acted as the blowing agent. The macro- and microstructure of the foams were analyzed using X-ray tomography, microscopy, and X-ray diffraction. The foams were subjected to hardness and compression tests to evaluate their mechanical properties. Deformation behavior was studied in situ by monitoring the foam surface during the compression test. For the first time to our knowledge, the present study established that 5 wt pct of Mg is sufficient to achieve foam expansion similar to that achieved by 15 wt pct Mg. Moreover, the structural and mechanical properties of the 5 wt pct Mg-containing foams were much superior to the 15 wt pct Mg-containing foams. However, the highest strength was obtained using 10 wt pct of Mg. Many cracks were observed at the early deformation stages of 10 and 15 wt pct Mg-containing foams. We correlate the Mg content with the structure, properties, and deformation behavior of the foams.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Source of data: Alporas foams,[42,50,51,52,53,54,55] Alulight foam,[50] other PM foams.[43,50,55,56] Note: error bar is not available for all the data points

Similar content being viewed by others

References

  1. F. García-Moreno: Materials., 2016, vol. 9, pp. 20–4.

    Article  Google Scholar 

  2. L.P. Lefebvre, J. Banhart, and D.C. Dunand: Adv. Eng. Mater., 2008, vol. 10, pp. 775–87.

    Article  CAS  Google Scholar 

  3. F. Simancik: Inżynieria Mater., 2001, vol. 5, pp. 823–8.

    Google Scholar 

  4. G.S.V. Kumar, K. Heim, F. Garcia-Moreno, J. Banhart, and A.R. Kennedy: Adv. Eng. Mater., 2013, vol. 15, pp. 129–33.

    Article  CAS  Google Scholar 

  5. T. Koizumi, K. Kido, K. Kita, K. Mikado, S. Gnyloskurenko, and T. Nakamura: Mater. Trans., 2011, vol. 52, pp. 728–33.

    Article  CAS  Google Scholar 

  6. B. Matijasevic, O. Görke, H. Schubert, and J. Banhart: Porous Metals and Metal Foaming Technology, 2006, pp. 107–10.

  7. A.R. Kennedy: Scripta Mater., 2002, vol. 47, pp. 763–7.

    Article  CAS  Google Scholar 

  8. B. Matijasevic and J. Banhart: Scripta Mater., 2006, vol. 54, pp. 503–8.

    Article  CAS  Google Scholar 

  9. B. Matijasevic-Lux, J. Banhart, S. Fiechter, O. Görke, and N. Wanderka: Acta Mater., 2006, vol. 54, pp. 1887–900.

    Article  CAS  Google Scholar 

  10. B. Muduli, T. Ramesh, K.C. Hari Kumar, N. Rajalakshmi, and M. Mukherjee: Materialia., 2019, vol. 8, p. 10431.

    Article  Google Scholar 

  11. M. Mukherjee, F. Garcia-Moreno, C. Jiménez, and J. Banhart: Adv. Eng. Mater., 2010, vol. 12, pp. 472–7.

    Article  CAS  Google Scholar 

  12. M. Mukherjee, F. Garcia-Moreno, and J. Banhart: Scripta Mater., 2010, vol. 63, pp. 235–8.

    Article  CAS  Google Scholar 

  13. M. Mukherjee, F. Garcia-Moreno, and J. Banhart: Acta Mater., 2010, vol. 58, pp. 6358–70.

    Article  CAS  Google Scholar 

  14. A. Azarniya and A. Rasooli: Adv. Powder Technol., 2016, vol. 27, pp. 281–8.

    Article  CAS  Google Scholar 

  15. P.M. Proa-Flores and R.A.L. Drew: Adv. Eng. Mater., 2008, vol. 10, pp. 830–4.

    Article  CAS  Google Scholar 

  16. J. Barode, U. Aravind, S. Bhogi, B. Muduli, and M. Mukherjee: Metall. Mater. Trans. B., 2021, vol. 52B, pp. 292–304.

    Article  Google Scholar 

  17. K. Georgy, L. Neelakantan, K.C. Hari Kumar, and M. Mukherjee: J. Mater. Sci., 2021, vol. 56, pp. 2612–30.

    Article  CAS  Google Scholar 

  18. F. Garcia-Moreno, M. Mukherjee, C. Jiménez, A. Rack, and J. Banhart: Metals., 2011, vol. 2, pp. 10–21.

    Article  Google Scholar 

  19. C. Jimenez, F. Garcia-Moreno, J. Banhart, and G. Zehl: in L. P Lefebvre, J Banhart, D. Dunand). P. Metals and M. Foams, eds., DEStech Publications, Pennsylvania, 2008, pp. 59–62.

    Google Scholar 

  20. M. Vittori Antisari, A. Aurora, D. Mirabile Gattia, and A. Montone: Scripta Materialia, 2009, vol. 61, pp. 1064–7.

  21. A. Baran and M. Polański: Materials, 2020, vol.13, p. 3993

  22. J.C. Crivello, B. Dam, R.V. Denys, M. Dornheim, D.M. Grant, J. Huot, T.R. Jensen, P. de Jongh, M. Latroche, C. Milanese, D. Milčius, G.S. Walker, C.J. Webb, C. Zlotea, and V.A. Yartys: Appl. Phys. A., 2016, vol. 122, pp. 1–20.

    Google Scholar 

  23. H. Ahlatci: J. Alloys Compd., 2010, vol. 503, pp. 122–6.

    Article  CAS  Google Scholar 

  24. Z. Guo, D. Ma, X. Yuan, and X. Dong: Rare Metal Mater. Eng., 2016, vol. 45, pp. 3068–73.

    Article  CAS  Google Scholar 

  25. H.-M. Helwig, S. Hiller, F. Garcia-Moreno, and J. Banhart: Metall. Mater. Trans. B., 2009, vol. 40B, pp. 755–67.

    Article  CAS  Google Scholar 

  26. H.-M. Helwig, F. Garcia-Moreno, and J. Banhart: J. Mater. Sci., 2011, vol. 46, pp. 5227–36.

    Article  CAS  Google Scholar 

  27. J. Banhart and H.W. Seeliger: Adv. Eng. Mater., 2012, vol. 14, pp. 1082–7.

    Article  CAS  Google Scholar 

  28. T.R. Neu, P.H. Kamm, N. von der Eltz, H.-W. Seeliger, J. Banhart, and F. García-Moreno: Materials Science and Engineering: A, 2020, vol. 800, p. 140260

  29. F. García-Moreno, L.A. Radtke, T.R. Neu, P.H. Kamm, M. Klaus, C.M. Schlepütz, and J. Banhart: Metals, 2020, vol.10, p. 189

  30. D. Lehmhus and J. Banhart: Mater. Sci. Eng. A., 2003, vol. 349, pp. 98–110.

    Article  Google Scholar 

  31. D. Lehmhus, J. Banhart, and M.A. Rodriguez-Perez: Mater. Sci. Technol., 2002, vol. 18, pp. 474–9.

    Article  CAS  Google Scholar 

  32. B. Sundman, B. Jansson, and J.O. Andersson: 1985, vol. 9, pp. 153–90.

  33. TCS aluminium-based alloy thermodynamic databases TCAL: Version 5, Thermo-Calc Software AB, Sweden, 2018.

    Google Scholar 

  34. M. Mukherjee, F. García-Moreno, C. Jiménez, A. Rack, and J. Banhart: Acta Mater., 2017, vol. 131, pp. 156–68.

    Article  CAS  Google Scholar 

  35. E.W. Andrews, G. Gioux, P. Onck, and L.J. Gibson: Int. J. Mech. Sci., 2001, vol. 43, pp. 701–13.

    Article  Google Scholar 

  36. U. Ramamurty and A. Paul: Acta Mater., 2004, vol. 52, pp. 869–76.

    Article  CAS  Google Scholar 

  37. F. García-Moreno, M. Mukherjee, C. Jiménez, and J. Banhart: Jom., 2015, vol. 67, pp. 955–65.

    Article  Google Scholar 

  38. A. Nylund and I. Olefjord: Mater. Sci. Eng. A., 1991, vol. 134, pp. 1225–8.

    Article  Google Scholar 

  39. G. Staniek and K. Wefers: Aluminium-Pulvermetallurgie., 1991, vol. 67, pp. 160–6.

    CAS  Google Scholar 

  40. N. Belov, D.G. Eskin, and A.A. Aksenov: Multicomponent Phase Diagrams: Applications for Commercial Aluminum Alloys, 2005.

  41. D. Han, J. Zhang, J. Huang, Y. Lian, and G. He: J. Magnesium Alloys., 2020, vol. 8, pp. 329–44.

    Article  CAS  Google Scholar 

  42. A.E. Simone and L.J. Gibson: Acta Mater., 1998, vol. 46, pp. 3109–23.

    Article  CAS  Google Scholar 

  43. M. Mukherjee, U. Ramamurty, F. Garcia-Moreno, and J. Banhart: Acta Mater., 2010, vol. 58, pp. 5031–42.

    Article  CAS  Google Scholar 

  44. P.N. Anyalebechi: Scripta Metall. Mater., 1995, vol. 33, pp. 1209–16.

    Article  CAS  Google Scholar 

  45. P.N. Anyalebechi: Scripta Mater., 1996, vol. 34, pp. 513–7.

    Article  CAS  Google Scholar 

  46. L.J. Gibson and M.F. Ashby: Cellular Solids: Structure and Properties, 2nd edn., Cambridge University Press, Cambridge, 1997.

  47. A. Srinivasan, U.T.S. Pillai, and B.C. Pai: Metall. Mater. Trans. A., 2005, vol. 36A, pp. 2235–43.

    Article  CAS  Google Scholar 

  48. J. Liu, L. Zhang, S. Liu, Z. Han, and Z. Dong: Materials Characterization, 2020, vol. 159, p. 110045

  49. Y. Sugimura, J. Meyer, M.Y. He, H. Bart-Smith, J. Grenstedt, and A.G. Evans: Acta Mater., 1997, vol. 45, pp. 5245–59.

    Article  CAS  Google Scholar 

  50. E. Andrews, W. Sanders, and L.J. Gibson: Mater. Sci. Eng. A., 1999, vol. 270, pp. 113–24.

    Article  Google Scholar 

  51. K.A. Dannemann and J. Lankford: Mater. Sci. Eng. A., 2000, vol. 293, pp. 157–64.

    Article  Google Scholar 

  52. Y. Sugimura, A. Rabiei, A. Evans, A. Harte, and N. Fleck: Mater. Sci. Eng. A., 1999, vol. 269, pp. 38–48.

    Article  Google Scholar 

  53. A.F. Bastawros, H. Bart-Smith, and A.G. Evans: J. Mech. Phys. Solids., 2000, vol. 48, pp. 301–22.

    Article  CAS  Google Scholar 

  54. I. Jeon and T. Asahina: Acta Mater., 2005, vol. 53, pp. 3415–23.

    Article  CAS  Google Scholar 

  55. A.E. Markaki and T.W. Clyne: Acta Mater., 2001, vol. 49, pp. 1677–86.

    Article  CAS  Google Scholar 

  56. J. Banhart and W. Brinkers: J. Mater. Sci. Lett., 1999, vol. 18, pp. 617–9.

    Article  CAS  Google Scholar 

  57. P.R. Onck, E.W. Andrews, and L.J. Gibson: Int. J. Mech. Sci., 2001, vol. 43, pp. 681–99.

    Article  Google Scholar 

  58. W.H. Krueger and S.R. Pollack: Surf. Sci., 1972, vol. 30, pp. 263–79.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are thankful to N. T. B. N. Koundinya for providing technical assistance in carrying out the compression tests and Vishnu PR for performing X-ray tomography. We also thank Francisco Garcia-Moreno for a useful discussion. The first and the last authors would like to thank the Naval Research Board of Defence Research and Development Organization, India, for providing partial funding for this study (project number NRB-371/MAT/15-16).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Georgy.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted February 22, 2021; accepted November 22, 2021.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 598 kb)

Appendices

Appendix A

Calculation of Hydrogen Content Present in the Form of Adsorbed Water on Metal Powder Surface

Both Al and Mg powders adsorb water on their surface. The particle size of Al powder used in this study is 23 μm (D50 value). Based on the data presented in Reference 37, the BET surface area of the Al powder used in this study can be taken as ≈ 0.4 m2/g. The surface area of Mg is 1.89 m2/g, as reported in a previous study.[16] Therefore, it is safe to assume that the overall surface area of the Al and Mg powders used in this study is not < 0.4 m2/g. If we consider Si powder does not adsorb any water, only 87 wt pct of the powder contains adsorbed water. Therefore, in a 100 g precursor, the effective surface area that adsorbs water is ≈ 0.4 × 87 m2. Water molecule density present in a monolayer of water adsorbed on metal powder surface is ≈ 1019 mol/m2.[58] Therefore, the number of moles of water present in a 100 g precursor is ≈ 1019 × 0.4 × 87. Since there could be up to ten monolayers of water,[38] the maximum possible number of water molecules is 1019 × 0.4 × 87 × 10 or 3.48 × 1021. N (N is Avogadro’s number, 6.023 × 1023) number of water molecules contains 2 g of hydrogen. From this, the amount of hydrogen that could be present in the form of adsorbed water layer in a 100 g precursor was estimated to be (3.48 × 1021 × 2)/(6.023 × 1023) ≈ 0.01 g or 0.01 wt pct.

Appendix B

Derivation of Eq. [2]

According to Onck et al.,[57]

$$ \frac{{\sigma _{{\text{p}}} }}{{\sigma _{{{\text{bulk}}}} }} = \frac{{\left( {\alpha - \frac{1}{2}} \right)^{2} }}{{\alpha ^{2} }} $$
(B.1)

where

$$ \sigma _{{{\text{bulk}}}} = \frac{{2\sigma _{y} }}{3}\left( {\frac{t}{l}} \right)^{2} $$
(B.2)

and

$$ \alpha = W/d $$
(B.3)

Substituting Eqs. [B.2] and [B.3] in [B.1],

$$ \frac{{\sigma _{{\text{p}}} }}{{\sigma _{{\text{y}}} }} = \frac{2}{3}\left( {\frac{t}{l}} \right)^{2} \frac{{\left( {W/d - 0.5} \right)^{2} }}{{\left( {W/d} \right)^{2} }} $$
(B.4)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Georgy, K., Kumar, K.C.H. & Mukherjee, M. Optimization of Mg Blowing Agent Content for Foaming Aluminum. Metall Mater Trans B 53, 1089–1102 (2022). https://doi.org/10.1007/s11663-021-02403-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-021-02403-3

Navigation