Skip to main content
Log in

Quasi-static Deformation Mechanism and Compressive Properties of Aluminum Foams Fabricated by Friction Stir Processing

  • Original Research Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Aluminum foams with varying densities of 1.21-0.62 g/cm3 and pore sizes of 0.3-5.8 mm were successfully fabricated by friction stir processing (FSP) by varying the foaming temperature and fixing FSP parameters. Further, the combined effect of density and pore distribution on quasi-static compression deformation was investigated with a fixed strain rate of 0.001 s−1. Experiments have been done to establish a relationship between the stress–strain curve and the cell deformation mechanism. A separate compressive stress–strain curve is drawn to a minimum density of 0.62 g/cm3, while corresponding deformation points on the curve are analyzed by the SEM micrograph and related to identifying the cell failure mechanism. The EDS mapping was also done to illustrate the elemental Ti, O and Al distributions before and after compression. The compression testing identified four types of cell failure, including hinge formation, shearing, bending and crack initiation with tearing. Furthermore, the combined effect of density and pore size on different mechanical properties has been studied. Quasi-static compression studies confirm that with an increase in density and pore size, plateau stress and energy absorption also increased in the studied region. Energy absorption per unit volume was reported highest at a density of 1.21 g/cm3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. I.N. Orbulov, A. Kemény, Á. Filep, and Z. Gácsi, Compressive Characteristics of Bimodal Aluminium Matrix Syntactic Foams, Compos. Part A Elsevier, 2019, 124, p 105479. https://doi.org/10.1016/j.compositesa.2019.105479

    Article  CAS  Google Scholar 

  2. I. Norbert, Materials Science & Engineering A Metal Matrix Syntactic Foams Produced by Pressure in Fi Ltration—The Effect of in Fi Ltration, Parameters, 2013, 583, p 11–19.

    Google Scholar 

  3. I. Norbert and K. Májlinger, Materia Ls and Design Description of the Compressive Response of Metal Matrix Syntactic Foams, Mater. Des Elsevier Ltd, 2013, 49, p 1–9. https://doi.org/10.1016/j.matdes.2013.02.007

    Article  CAS  Google Scholar 

  4. M.I. Idris, T. Vodenitcharova, and M. Hoffman, Mechanical Behaviour and Energy Absorption of Closed-Cell Aluminium Foam Panels in Uniaxial Compression, Mater. Sci. Eng. A, 2009, 517(1–2), p 37–45.

    Article  Google Scholar 

  5. T. Mukai, T. Miyoshi, S. Nakano, H. Somekawa, and K. Higashi, Compressive Response of a Closed-Cell Aluminum Foam at High Strain Rate, Scr. Mater., 2006, 54(4), p 533–537.

    Article  CAS  Google Scholar 

  6. I.W. Hall, M. Guden, and C.J. Yu, Crushing of Aluminum Closed Cell Foams: Density and Strain Rate Effects, Scr. Mater., 2000, 43(6), p 515–521.

    Article  CAS  Google Scholar 

  7. J. Banhart, Manufacture, Characterisation and Application of Cellular Metals and Metal Foams, Prog. Mater. Sci., 2001, 46(6), p 559–632.

    Article  CAS  Google Scholar 

  8. M.A. Kader, M.A. Islam, P.J. Hazell, J.P. Escobedo, M. Saadatfar, A.D. Brown, and G.J. Appleby-Thomas, Modelling and Characterization of Cell Collapse in Aluminium Foams during Dynamic Loading, Int. J. Impact Eng, 2016, 1(96), p 78–88. https://doi.org/10.1016/j.ijimpeng.2016.05.020

    Article  Google Scholar 

  9. L. Salvo, P. Cloetens, E. Maire, S. Zabler, J.J. Blandin, J.Y. Buffiere, W. Ludwig, E. Boller, D. Bellet, and C. Josserond, X-ray Micro-Tomography an Attractive Characterisation Technique in Materials Science, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms., 2003, 1(200), p 273–286.

    Article  Google Scholar 

  10. H. Yu, Z. Guo, B. Li, G. Yao, H. Luo, and Y. Liu, Research into the Effect of Cell Diameter of Aluminum Foam on Its Compressive and Energy Absorption Properties, Mater. Sci. Eng. A, 2007, 454–455, p 542–546.

    Article  Google Scholar 

  11. R.E. Raj and B.S.S. Daniel, Structural and Compressive Property Correlation of Closed-Cell Aluminum Foam, J. Alloys Compd., 2009, 467(1–2), p 550–556.

    Article  CAS  Google Scholar 

  12. B. Zhang, S. Hu, and Z. Fan, Anisotropic Compressive Behavior of Functionally Density Graded Aluminum Foam Prepared by Controlled Melt Foaming Process, Materials., 2018, 11(12), p 2470.

    Article  PubMed  PubMed Central  Google Scholar 

  13. D. Yang, H. Wang, S. Guo, J. Chen, Y. Xu, D. Lei, J. Sun, L. Wang, J. Jiang, and A. Ma, Coupling Effect of Porosity and Cell Size on the Deformation Behavior of Al Alloy Foam under Quasi-Static Compression, Materials., 2019, 12(6), p 951.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. A.D. Resnyansky and D.S. and T. Organisation, The Impact Response of Composite Materials Involved in Helicopter Vulnerability Assessment Literature Review-Part 2, Science (80)., (AR-013-615), p 98 (2006)

  15. E. Amsterdam, J.H.B. de Vries, J.T.M. De Hosson, and P.R. Onck, The Influence of Strain-Induced Damage on the Mechanical Response of Open-Cell Aluminum Foam, Acta Mater., 2008, 56(3), p 609–618.

    Article  CAS  Google Scholar 

  16. E. Amsterdam, J.T.M. De Hosson, and P.R. Onck, Failure Mechanisms of Closed-Cell Aluminum Foam under Monotonic and Cyclic Loading, Acta Mater., 2006, 54(17), p 4465–4472.

    Article  CAS  Google Scholar 

  17. Z. Zheng, J. Yu, C. Wang, S. Liao, and Y. Liu, Dynamic Crushing of Cellular Materials: A Unified Framework of Plastic Shock Wave Models, Int. J. Impact Eng, 2013, 1(53), p 29–43. https://doi.org/10.1016/j.ijimpeng.2012.06.012

    Article  Google Scholar 

  18. R.E. Raj, V. Parameswaran, and B.S. Daniel, Comparison of Quasi-Static and Dynamic Compression Behavior of Closed-Cell Aluminum Foam, Mater. Sci. Eng. A, 2009, 526(1–2), p 11–15.

    Google Scholar 

  19. K.A. Dannemann and J. Lankford, High Strain Rate Compression of Closed-Cell Aluminum Foams, Mater. Sci. Eng. A, 2000, 293(1), p 157–164.

    Article  Google Scholar 

  20. C.M. Cady, G.T. Gray, C. Liu, M.L. Lovato, and T. Mukai, Compressive Properties of a Closed-Cell Aluminum Foam as a Function of Strain Rate and Temperature, Mater. Sci. Eng. A, 2009, 525(1–2), p 1–6.

    Article  Google Scholar 

  21. Y. Hangai and T. Utsunomiya, Fabrication of Porous Aluminum by Friction Stir Processing, Metall. Mater. Trans. A, 2009, 40, p 275–277.

    Article  Google Scholar 

  22. Y. Hangai, K. Takada, R. Endoh, S. Koyama, and T. Utsunomiya, Foaming Behavior of Aluminum Foam Precursor Induced by Friction Heat Generated by Rotating Tool Used for Spot Friction Stir Welding, J. Manuf. Process., 2017, 1(25), p 426–431. https://doi.org/10.1016/j.jmapro.2017.01.002

    Article  Google Scholar 

  23. J.Q. Su, T.W. Nelson, and C.J. Sterling, Friction Stir Processing of Large-Area Bulk UFG Aluminum Alloys, Scr. Mater., 2005, 52(2), p 135–140.

    Article  CAS  Google Scholar 

  24. Y.S. Sato, S.H.C. Park, A. Matsunaga, A. Honda, and H. Kokawa, Novel Production for Highly Formable Mg Alloy Plate, J. Mater. Sci., 2005, 40(3), p 637–642.

    Article  CAS  Google Scholar 

  25. Y. Hangai and T. Utsunomiya, Manufacture of Porous Aluminum by Utilizing Friction Stir Processing, Nippon Kinzoku Gakkaishi/J. Jpn. Inst. Metals., 2009, 73(2), p 131–133.

    Article  CAS  Google Scholar 

  26. Y. Hangai, Y. Ozeki, S. Kawano, T. Utsunomiya, O. Kuwazuru, M. Hasegawa, S. Koyama, and N. Yoshikawa, Nondestructive Observation of Pore Structures of A1050 Porous Aluminum Fabricated by Friction Stir Processing, Mater. Trans., 2010, 51(3), p 548–552.

    Article  CAS  Google Scholar 

  27. T. Utsunomiya, K.I. Tamura, Y. Hangai, O. Kuwazuru, and N. Yoshikawa, Effects of Tool Rotating Rate and Pass Number on Pore Structure of A6061 Porous Aluminum Fabricated by Using Friction Stir Processing, Mater. Trans., 2010, 51(3), p 542–547.

    Article  CAS  Google Scholar 

  28. S. Rathore, R.K. Singh, and K.L. Khan, Effect of Process Parameters on Mechanical Properties of Aluminum Composite Foam Developed by Friction Stir Processing, Proceed. Inst. Mech. Eng. Part B J. Eng. Manuf., 2021, 235(12), p 1892–1903.

    Article  CAS  Google Scholar 

  29. Y. Hangai, H. Kato, T. Utsunomiyav, S. Kitahara, O. Kuwazuru, and N. Yoshikawa, Effects of Porosity and Pore Structure on Compression Properties of Blowing-Agent-Free Aluminum Foams Fabricated from Aluminum Alloy Die Castings, Mater. Trans., 2012, 53(8), p 1515–1520.

    Article  CAS  Google Scholar 

  30. S.U. Nisa, S. Pandey, and P.M. Pandey, Significance of Al2O3 Addition in the Aluminum 6063 Metal Foam Formation Through Friction Stir Processing Route-A Comprehensive Study, Proceed. Inst. Mech. Eng. Part L J. Mater. Des. Appl., 2021, 235(12), p 2737–2745.

    CAS  Google Scholar 

  31. Y. Hangai, K. Takahashi, R. Yamaguchi, T. Utsunomiya, S. Kitahara, O. Kuwazuru, and N. Yoshikawa, Nondestructive Observation of Pore Structure Deformation Behavior of Functionally Graded Aluminum Foam by x-ray Computed Tomography, Mater. Sci. Eng. A, 2012, 556, p 678–684.

    Article  CAS  Google Scholar 

  32. Y. Hangai, R. Yamaguchi, S. Takahashi, T. Utsunomiya, O. Kuwazuru, and N. Yoshikawa, Deformation Behavior Estimation of Aluminum Foam by x-ray CT Image-Based Finite Element Analysis, Metall. Mater. Trans. A, 2013, 44, p 1880–1886.

    Article  CAS  Google Scholar 

  33. T. Utsunomiya, K. Takahashi, Y. Hangai, and S. Kitahara, Effects of Amounts of Blowing Agent and Contained Gases on Porosity and Pore Structure of Porous Aluminum Fabricated from Aluminum Alloy Die Casting by Friction Stir Processing Route, Mater. Trans., 2011, 52(6), p 1263–1268.

    Article  CAS  Google Scholar 

  34. N. Mahmutyazicioglu, O. Albayrak, M. Ipekoglu, and S. Altintas, Effects of Alumina (Al2O3) Addition on the Cell Structure and Mechanical Properties of 6061 Foams, J. Mater. Res., 2013, 28(17), p 2509–2519.

    Article  CAS  Google Scholar 

  35. F. García-Moreno and J. Banhart, Influence of Gas Pressure and Blowing Agent Content on the Formation of Aluminum Alloy Foam, Adv. Eng. Mater., 2021, 23(10), p 2–9.

    Article  Google Scholar 

  36. Y. Hangai, T. Utsunomiya, and M. Hasegawa, Effect of Tool Rotating Rate on Foaming Properties of Porous Aluminum Fabricated by Using Friction Stir Processing, J. Mater. Process. Technol., 2010, 210(2), p 288–292.

    Article  CAS  Google Scholar 

  37. H.T. Ccy, Aluminum Foams by Designing Pore-Density, (2021).

  38. C. Wang, L. Pan, Y. Zhang, S. Xiao, and Y. Chen, Deoxidization Mechanism of Hydrogen in TiH2 Dehydrogenation Process, Int. J. Hydrog. Energy, 2016, 41(33), p 14836–14841. https://doi.org/10.1016/j.ijhydene.2016.05.155

    Article  CAS  Google Scholar 

  39. I. Paulin, Č Donik, D. Mandrino, M. Vončina, and M. Jenko, Surface Characterization of Titanium Hydride Powder, Vacuum, 2012, 86(6), p 608–613.

    Article  CAS  Google Scholar 

  40. M.A. Kader, M.A. Islam, M. Saadatfar, P.J. Hazell, A.D. Brown, S. Ahmed, and J.P. Escobedo, Macro and Micro Collapse Mechanisms of Closed-Cell Aluminium Foams during Quasi-Static Compression, Mater. Des., 2017, 15(118), p 11–21.

    Article  Google Scholar 

  41. Y. Mu, G. Yao, L. Liang, H. Luo, and G. Zu, Deformation Mechanisms of Closed-Cell Aluminum Foam in Compression, Scr. Mater., 2010, 63(6), p 629–632. https://doi.org/10.1016/j.scriptamat.2010.05.041

    Article  CAS  Google Scholar 

  42. H. Song, Q. He, J. Xie, and A. Tobota, Composites Science and Technology Fracture Mechanisms and Size Effects of Brittle Metallic Foams, In Situ Compress. Tests Inside SEM, 2008, 68, p 2441–2450.

    CAS  Google Scholar 

  43. Y. Cheng, Y. Li, X. Chen, X. Zhou, and N. Wang, Compressive Properties and Energy Absorption of Aluminum Foams with a Wide Range of Relative Densities, J. Mater. Eng. Perform., 2018, 27, p 4016–4024. https://doi.org/10.1007/s11665-018-3514-4

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. S. S. Daniel.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lohani, D., Daniel, B.S.S. Quasi-static Deformation Mechanism and Compressive Properties of Aluminum Foams Fabricated by Friction Stir Processing. J. of Materi Eng and Perform (2024). https://doi.org/10.1007/s11665-024-09508-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11665-024-09508-1

Keywords

Navigation