Skip to main content
Log in

New Deoxidation Method of Titanium Using Metal Filter in Molten Salt

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Metallic Ti has a strong affinity for O at high temperatures, and methods for removing O directly from Ti are limited. Recently, the authors developed a new sintering process that removes O from Ti using Y metal as a deoxidizing agent in molten salt. However, Y contaminated the sintered Ti body. To address this problem, the authors developed a new Ti deoxidation process using a metal filter. In this process, a Ti green made of Ti powder and Y metal are introduced with molten salt into the respective sides of a room divided by a Ti filter. O removed from the Ti green passes through the Ti filter and reacts with the Y metal. Meanwhile, the small solubility and diffusion coefficient of Y in β-Ti are expected to kinetically prevent Y contamination of the sintered Ti body. It was experimentally demonstrated that a sintered Ti product with a low-O-concentration (< 250 mass ppm O) can be produced while suppressing Y contamination (< 120 mass ppm Y) in the new process. The establishment of this process enables low-cost production of highly functional Ti products and the recycling of Ti scraps in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J.L. Murray and H.A. Wriedt: J. Phase Equilib., 1987, vol. 8, pp. 148–65.

    Article  CAS  Google Scholar 

  2. T.B. Massalski, H. Okamoto, P.R. Subramanian, and L. Kacprzak: Binary Alloy Phase Diagrams, 2nd ed. Materials Park, ASM International, 1990, p. 2926.

    Google Scholar 

  3. P. Waldner and G. Eriksson: Calphad., 1999, vol. 23, pp. 189–218.

    Article  CAS  Google Scholar 

  4. J.L. Murray: Bull. Alloy Phase Diagr., 1981, vol. 2, pp. 320–34.

    Article  Google Scholar 

  5. H. Bo, J. Wang, L. Duarte, C. Leinebach, L. Liu, H. Liu, and Z. Jin: Trans. Nonferrous Met. Soc. China., 2021, vol. 22, pp. 2204–11.

    Article  CAS  Google Scholar 

  6. A. Iizuka, T. Ouchi, and T.H. Okabe: Mater. Trans., 2020, vol. 61, pp. 758–65.

    Article  CAS  Google Scholar 

  7. T.H. Okabe, K. Hirota, E. Kasai, F. Saito, Y. Waseda, and K.T. Jacob: J. Alloys Compd., 1998, vol. 279, pp. 184–91.

    Article  CAS  Google Scholar 

  8. T.H. Okabe, C. Zheng, and Y. Taninouchi: Metall. Mater. Trans. B., 2018, vol. 49B, pp. 1056–66.

    Article  CAS  Google Scholar 

  9. T.H. Okabe, C. Zheng, and Y. Taninouchi: Metall. Mater. Trans. B., 2018, vol. 49B, pp. 3107–11.

    Article  CAS  Google Scholar 

  10. C. Zheng, T. Ouchi, A. Iizuka, Y. Taninouchi, and T.H. Okabe: Metall. Mater. Trans. B., 2019, vol. 50B, pp. 622–31.

    Article  CAS  Google Scholar 

  11. C. Zheng, T. Ouchi, L. Kong, Y. Taninouchi, and T.H. Okabe: Metall. Mater. Trans. B., 2019, vol. 50B, pp. 1652–61.

    Article  CAS  Google Scholar 

  12. L. Kong, T. Ouchi, and T.H. Okabe: Mater. Trans., 2019, vol. 60, pp. 2059–68.

    Article  CAS  Google Scholar 

  13. L. Kong, T. Ouchi, and T.H. Okabe: J. Electrochem. Soc., 2019, vol. 166, pp. 429–37.

    Article  CAS  Google Scholar 

  14. A. Iizuka, T. Ouchi, and T.H. Okabe: Metall. Mater. Trans. B., 2020, vol. 51B(2), pp. 433–42.

    Article  CAS  Google Scholar 

  15. T. Tanaka, T. Ouchi, and T.H. Okabe: Metall. Mater. Trans. B., 2020, vol. 51B, pp. 1485–94.

    Article  CAS  Google Scholar 

  16. T. Tanaka, T. Ouchi, and T.H. Okabe: J. Sustain. Metall., 2020, vol. 6, pp. 667–79.

    Article  Google Scholar 

  17. L. Kong, T. Ouchi, and T.H. Okabe: J. Alloys Compd., 2021, vol. 863, p. 156047.

    Article  CAS  Google Scholar 

  18. E.M. Savitskii and G.S. Burkhanov: Russ. J. Inorg. Chem., 1957, vol. 2, pp. 2609–16. (in Russian).

    CAS  Google Scholar 

  19. C.E. Lundin and D.T. Klodt: Trans. Metall. Soc. AIME., 1962, vol. 224, pp. 367–72.

    CAS  Google Scholar 

  20. N. T’en and I.S. Morozov: Russ. J. Inorg. Chem., 1969, vol. 14, pp. 1179–83.

    Google Scholar 

  21. D.V. Drobot, B.G. Korshunov, and L.V. Durinina: Inorg. Mater., 1968, vol. 1978–1985

  22. J.D. Corbett, J.D. Smith, and E. Garcia: J. Less-Common Met., 1986, vol. 115, pp. 343–55.

    Article  CAS  Google Scholar 

  23. Y.F. Yang, S.F. Li, M. Qian, Q.S. Zhu, C.Q. Hu, and Y. Shi: J. Alloys Compd., 2018, vol. 764, pp. 467–75.

    Article  CAS  Google Scholar 

  24. B. Poorganji, A. Kazahari, T. Narushima, C. Ouchi, and T. Furuhara: J. Phys., 2010, vol. 240, pp. 1–4.

    Google Scholar 

  25. American Society for Testing and Materials: ASTM standards in building codes : specifications, test methods, practices, classifications, terminology, 38th ed., ASTM International, Philadelphia, Pennsylvania, 2001, p. 2017.

  26. T.H. Okabe, R.O. Suzuki, T. Oishi, and K. Ono: Mater. Trans. JIM., 1991, vol. 32, pp. 485–8.

    Article  CAS  Google Scholar 

  27. Barin: Thermochemical Data of Pure Substances, 3rd ed. VCH Verlagsgesellschaft mbH, Weinheim, 1995.

    Book  Google Scholar 

  28. Y.B. Patrikeev, G.I. Novikov, and V.V. Badovskii: Russ. J. Phys. Chem., 1973, vol. 47, p. 284.

    Google Scholar 

  29. O. Knacke, O. Kubaschewski, and K. Hesselmann: Thermochemical Properties of Inorganic Substances, 2nd ed. Springer, Berlin, 1991.

    Google Scholar 

  30. C.J. Rosa: Metall. Trans., 1970, vol. 1, pp. 2517–22.

    Article  CAS  Google Scholar 

  31. M.H. Song, S.M. Han, G.S. Choi, D.J. Min, and J.H. Park: Metall. Mater. Trans. A., 2009, vol. 49A, pp. 495–8.

    Article  CAS  Google Scholar 

  32. A.D. LeClaire: Landolt-Börnstein - Group III Condensed Matter, Berlin, Germany, 1990.

  33. Z.Z. Fang, Y. Xia, P. Sun, Y. Zhang, WO Patent No. 2016/090052 Al, 2016.

  34. Y. Zhang, Z.Z. Fang, P. Sun, T.Y. Zhang, Y. Xia, C.S. Zhou, and Z. Huang: J. Am. Chem. Soc., 2016, vol. 138(2016), pp. 6916–9.

    Article  CAS  Google Scholar 

  35. J.M. Oh, K.M. Roh, and J.W. Lim: Int. J. Hydrog., 2016, vol. 41, pp. 23033–41.

    Article  CAS  Google Scholar 

  36. C. Hong, J.M. Oh, J. Park, J.M. Yoon, and J.W. Lim: Adv. Powder Technol., 2018, vol. 29, pp. 1640–3.

    Article  CAS  Google Scholar 

  37. J.M. Oh, C. Hong, and J.W. Lim: Adv. Powder Technol., 2019, vol. 30, pp. 1–5.

    Article  CAS  Google Scholar 

  38. M. Watanabe, F. Sato, R. Abe, K. Ueda, D. Matsuwaka, F. Kud, and T. Narushima: Metall. Mater. Trans. B., 2019, vol. 50B, pp. 1553–8.

    Article  CAS  Google Scholar 

  39. Y. Su, L. Wang, L. Luo, X. Jaing, J. Guo, and H. Fu: Int. J. Hydrog., 2009, vol. 34, pp. 8958–63.

    Article  CAS  Google Scholar 

  40. Y. Xia, J. Zhao, Q. Tian, and X. Guo: JOM., 2019, vol. 71, pp. 3209–20.

    Article  CAS  Google Scholar 

  41. Y. Xia, Z.Z. Fang, D. Fan, P. Sun, Y. Zhang, and J. Zhu: Int. J. Hydrog., 2018, vol. 43, pp. 11939–51.

    Article  CAS  Google Scholar 

  42. S. Kim, J. Oh, and J. Lim: Met. Mater. Int., 2016, vol. 22, pp. 658–62.

    Article  CAS  Google Scholar 

  43. K. Roh, C. Suh, J. Oh, W. Kim, H. Kwon, and J. Lim: Powder Technol., 2014, vol. 253, pp. 266–9.

    Article  CAS  Google Scholar 

  44. Y. Zhang, W. Lu, P. Sun, Z.Z. Fang, S. Qiao, Y. Zhang, and S. Zheng: Int. J. Refract. Met. Hard Mater., 2020, vol. 91, p. 105270.

    Article  CAS  Google Scholar 

  45. T. Narushima, K. Ueda, and R. Abe: J. Jpn. Inst. Light Met., 2020, vol. 70, pp. 316–7. (in Japanese).

    Google Scholar 

  46. D. Matsuwaka, F. Kudo, H. Ishida, and T. Deura: MATEC Web Conf., 2020, vol. 321, p. 10002.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Dr. Gen Kamimura, Mr. Kenta Akaishi, and Mr. Hiromu Hiramatsu at The University of Tokyo for their helpful suggestions and help with the experiments. This work was financially supported by the Japan Society for the Promotion of Science (JSPS) through a Grant-in-Aid for Scientific Research (S) (KAKENHI Grant Nos. 26220910, and 19H05623). This work is also based on results obtained from a project commissioned by the New Energy and Industrial Technology Development Organization (NEDO).

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takanari Ouchi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted June 29, 2021; accepted November 20, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iizuka, A., Ouchi, T. & Okabe, T.H. New Deoxidation Method of Titanium Using Metal Filter in Molten Salt. Metall Mater Trans B 53, 1371–1382 (2022). https://doi.org/10.1007/s11663-021-02400-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-021-02400-6

Navigation