Skip to main content
Log in

Ladle Eye Formation Due to Bottom Gas Injection: A Reassessment of Experimental Data

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The ladle furnace was a watershed in the evolution of steelmaking when it was invented in the 1980s. Both the BOF and the EAF were assigned a more specialized role. The ladle furnace assumed the function to provide for the final steel chemistry with the lowest concentration of sulfur and non-metallic inclusions. Both functions are possible with the use of bottom gas injection. Through many years of intense research work it has been possible to identify conditions to improve the mixing conditions in liquid steel; however those conditions result in another problem, the ladle eye. The ladle eye has been extensively investigated in the past and the results have been reported in many relationships because, it has been argued that the previous ones cannot accurately predict the new experimental values. There are several reasons why the existing relationships cannot predict all the experimental data; the experimental conditions are different or the number of variables is also different. The current work has made a re-assessment of most of the existing experimental data on ladle eye using dimensional analysis. It was possible to unify all experimental data for thin slags, thick slags, different nozzle diameters, nozzle and porous plugs, cold model results and industrial plant results, etc., using the following two correlations, for single and double injection elements:

\(\begin{gathered} \frac{{A_{{\text{e}}} }}{{H^{2} }} = 0.3076\left( {\frac{{h_{{\text{s}}} }}{H}} \right)^{ - 1.019} \left( {\frac{{Q^{2} }}{{gH^{5} }}} \right)^{0.408} \left( {\frac{\Delta \rho }{{\rho_{{\text{l}}} }}} \right)^{ - 1.238} \left( {\frac{{\nu_{s} }}{{g^{0.5} H^{1.5} }}} \right)^{ - 0.084} \left( \frac{D}{H} \right)^{ - 0.197} \left( {\frac{{r_{1} }}{H}} \right)^{0.014} ;N = 1 \hfill \\ \frac{{A_{{\text{e}}} }}{{H^{2} }} = 0.204\left( {\frac{{h_{{\text{s}}} }}{H}} \right)^{ - 0.702} \left( {\frac{{Q^{2} }}{{gH^{5} }}} \right)^{0.317} \left( {\frac{{r_{3} }}{{r_{1} }}} \right)^{ - 0.056} \left( {\frac{{r_{3} }}{{r_{2} }}} \right)^{0.061} \left( {\frac{\Delta \rho }{{\rho_{l} }}} \right)^{ - 1.012} \left( {\frac{{\nu_{{\text{s}}} }}{{g^{0.5} H^{1.5} }}} \right)^{ - 0.09} \left( \frac{D}{H} \right)^{0.431} ;N = 2 \hfill \\ \end{gathered}\)

where Ae is the slag eye area, Q is the gas flow rate, H is the height of liquid steel or water, hs is the slag or oil thickness, \({\rho}_{\text{l}}\) is the density of liquid steel or water, \({\Delta}{\rho}\) is the density difference between the two liquids, D is the ladle diameter, r1 and r2 represent the nozzle or porous plug distance from the center, r3 is the distance between nozzles or porous plugs, \({ \nu }_{\text{s}}\) is the slag or oil kinematic viscosity, N is the number of nozzles or porous plugs, and g the gravity force. These equations include all the relevant variables that affect the formation of ladle eye and can be used to predict its formation on both laboratory and industrial scales. The exponents in the dimensionless variables also provide information on their impact factor and can be used to define conditions that decrease the ladle eye area. For comparison purposes, it is suggested to report the dimensionless ladle eye with respect to the cross-sectional area of the ladle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. A.N. Conejo: Fundamentals of Dimensional Analysis: Theory and Applications in Metallurgy, ISBN 978-981-16-1601-3, Springer, Berlin, 2021.

  2. D. Mazumdar and R.I.L. Guthrie: ISIJ Int., 1995, vol. 35, pp. 1–20.

    Article  CAS  Google Scholar 

  3. Y. Liu, M. Ersson, H. Liu, P.G. Jönsson, and Y. Gan: Metall. Mater. Trans. B Process Metall. Mater. Process. Sci., 2019, vol. 50, pp. 555–77.

  4. K. Nakanishi and T. Fujii: Tetsu to Hagane, 1973, p. S460.

  5. K. Nakanishi, T. Fujii, and J. Szekely: Ironmak. Steelmak., 1975, vol. 2, pp. 193–7.

    CAS  Google Scholar 

  6. K. Yonezawa and K. Schwerdtfeger: Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 1999, vol. 30, pp. 411–18.

  7. U. Narusawa, S. Takao, and Y. Suzukawa: AIChE J., 1983, vol. 29, pp. 511–3.

    Article  CAS  Google Scholar 

  8. V. Sahajwalla, A.H. Castillejos, and J.K. Brimacombe: Metall. Trans. B., 1990, vol. 21, pp. 71–80.

    Article  Google Scholar 

  9. E. Steinmetz and P.R. Scheller: Stahl Eisen., 1987, vol. 107, pp. 417–25.

    Google Scholar 

  10. K. Yonezawa and K. Schwerdtfeger: Metall. Mater. Trans. B Process Metall. Mater. Process. Sci., 1999, vol. 30, pp. 655–60.

  11. K. Yonezawa and K. Schwerdtfeger: Metall. Mater. Trans. B Process Metall. Mater. Process. Sci., 2000, vol. 31, pp. 464–68.

  12. Subagyo, G. Brooks, and G.A. Iron: ISIJ Int., 2003, vol. 43, pp. 262–63.

  13. K. Yonezawa and K. Schwerdtfeger: ISIJ Int., 2004, vol. 44, pp. 217–19.

    Article  CAS  Google Scholar 

  14. D. Mazumdar and J.W. Evans: ISIJ Int., 2003, vol. 43, pp. 2076–8.

    Article  CAS  Google Scholar 

  15. D. Mazumdar and J.W. Evans: Metall. Mater. Trans. B Process Metall. Mater. Process. Sci., 2004, vol. 35, pp. 400–04.

  16. D. Mazumdar: Metall. Mater. Trans. B Process Metall. Mater. Process. Sci., 2002, vol. 33, pp. 937–41.

  17. S. Takashima and M. Iguchi: Tetsu-To-Hagane/Journal Iron Steel Inst. Japan., 2000, vol. 86, pp. 217–24.

    Article  CAS  Google Scholar 

  18. M. Iguchi, K.I. Miyamoto, S. Yamashita, D. Iguchi, and M. Zeze: ISIJ Int., 2004, vol. 44, pp. 636–8.

    Article  CAS  Google Scholar 

  19. M.A.S.C. Castello-Branco and K. Schwerdtfeger: Metall. Mater. Trans. B., 1994, vol. 25, pp. 359–71.

    Article  CAS  Google Scholar 

  20. K. Krishnapisharody and G.A. Irons: Metall. Mater. Trans. B Process Metall. Mater. Process. Sci., 2006, vol. 37, pp. 763–72.

  21. K. Krishnapisharody and G.A. Irons: Metall. Mater. Trans. B Process Metall. Mater. Process. Sci., 2007, vol. 38, pp. 501–02.

  22. K.J. Graham, K. Krishnapisharody, G.A. Irons, and J.F. MacGregor: Can. Metall. Q., 2007, vol. 46, pp. 397–406.

    Article  CAS  Google Scholar 

  23. K. Krishnapisharody and G.A. Irons: AISTech - Iron Steel Technol. Conf. Proc., 2007, vol. 1, pp. 1345–54.

  24. K. Krishnapisharody and G.A. Irons: in 3rd International conference on process development in iron and steelmaking (SCANMET III), vol. 2, Lulea Sweden, June 8-11, 2008, pp. 589–99.

  25. K. Krishnapisharody and G.A. Irons: ISIJ Int., 2008, vol. 48, pp. 1807–9.

    Article  CAS  Google Scholar 

  26. K. Krishnapisharody and G.A. Irons: ISIJ Int., 2010, vol. 50, pp. 1413–21.

    Article  CAS  Google Scholar 

  27. K. Krishnapisharody and G.A. Irons: Iron Steel Technol., 2011, vol. 8, pp. 167–73.

    Google Scholar 

  28. G. Irons, A. Senguttuvan, and K. Krishnapisharody: ISIJ Int., 2015, vol. 55, pp. 1–6.

    Article  CAS  Google Scholar 

  29. K. Krishnapisharody and G.A. Irons: Metall. Mater. Trans. B Process Metall. Mater. Process. Sci., 2015, vol. 46, pp. 191–98.

  30. D. Guo and G.A. Irons: Metall. Mater. Trans. B Process Metall. Mater. Process. Sci., 2002, vol. 33, pp. 377–84.

  31. K. Krishnapisharody and G.A. Irons: Metall. Mater. Trans. B Process Metall. Mater. Process. Sci., 2007, vol. 38, pp. 367–75.

  32. K. Krishnapisharody and G.A. Irons: Metall. Mater. Trans. B Process Metall. Mater. Process. Sci., 2007, vol. 38, pp. 377–88.

  33. S. Joo and R.I.L. Guthrie: Metall. Trans. B., 1992, vol. 23, pp. 765–78.

    Article  Google Scholar 

  34. A.N. Conejo: in 3rd European Steel Technology and Application Days (ESTAD 2017), Viena, Austria. June 26-29, 2017, pp. 1189–98.

  35. D. Mazumdar and J.W. Evans: Modeling of Steelmaking Processes, 1st Editio, CRC Press, Boca Raton FL USA, 2010.

    Google Scholar 

  36. G. Ebneth and W. Pluschkell: Steel Res., 1985, vol. 56, pp. 513–8.

    Article  CAS  Google Scholar 

  37. D. Mazumdar and J.W. Evans: Metall. Mater. Trans. B Process Metall. Mater. Process. Sci., 2007, vol. 38, pp. 497–99.

  38. A.H. Castillejos and J.K. Brimacombe: Metall. Trans. B., 1987, vol. 18, pp. 659–71.

    Article  Google Scholar 

  39. L. Wu, P. Valentin, and D. Sichen: Steel Res. Int., 2010, vol. 81, pp. 508–15.

    Article  CAS  Google Scholar 

  40. M. Peranandhanthan and D. Mazumdar: ISIJ Int., 2010, vol. 50, pp. 1622–31.

    Article  CAS  Google Scholar 

  41. C.A. da Silva, I. Silva, V. Leao, V. Seshadri, O. Neto, and V. Lambertucci: in VII International Conference on Molten Slags Fluxes and Salts, Santiago, Chile. January 18-21, 2009, pp. 751–62.

  42. A.P. De Sa, V. Seshadri, I.A. Da Silva, F. De Menezes Torres, C.A. Da Silva, and E.F. Rodrigues: TMS Annu. Meet., 2015, vol. 2015-March, pp. 397–404.

  43. A.P. de Sá, F. de M. Torres, C.A. da Silva, I.A. da Silva, and V. Seshadri: Adv. Molten Slags, Fluxes, Salts Proc. 10th Int. Conf. Molten Slags, Fluxes Salts 2016, 2016, pp. 1127–34.

  44. Z. Liu, L. Li, and B. Li: ISIJ Int., 2017, vol. 57, pp. 1971–9.

    Article  CAS  Google Scholar 

  45. L. Li, B. Li, and Z. Liu: ISIJ Int., 2017, vol. 57, pp. 1980–9.

    Article  CAS  Google Scholar 

  46. N. ning Lv, L. shun Wu, H. chuan Wang, Y. chi Dong, and C. Su: J. Iron Steel Res. Int., 2017, vol. 24, pp. 243–50.

  47. L.E. Jardón Pérez, A. Amaro-Villeda, A.N. Conejo, C. González-Rivera, and M.A. Ramírez-Argáez: Mater. Manuf. Process., 2018, vol. 33, pp. 882–90.

  48. T. Palovaara, V.V. Visuri, and T. Fabritius: in ICS 2018 - 7th International Congress on Science and Technology of Steelmaking: The Challenge of Industry 4.0, Venice Italy, June 13-15, 2018, p. 055.

  49. V.T. Mantripragada and S. Sarkar: Chem. Eng. Res. Des., 2018, vol. 139, pp. 335–45.

    Article  CAS  Google Scholar 

  50. V.T. Mantripragada and S. Sarkar: Can. Metall. Q., 2020, vol. 59, pp. 159–68.

    Article  CAS  Google Scholar 

  51. A. Tripathi, J.K. Saha, J.B. Singh, and S.K. Ajmani: ISIJ Int., 2012, vol. 52, pp. 1591–600.

    Article  CAS  Google Scholar 

  52. S. Sarkar: Personal communication. 2021.

  53. Y.H. Liu, Z. He, and L.P. Pan: Adv. Mech. Eng., 2014, vol. 2014, pp. 6–11.

    Google Scholar 

  54. H. jung Lee and K. woo Yi: Met. Mater. Int., 2015, vol. 21, pp. 511–20.

  55. E.K. Ramasetti, V.V. Visuri, P. Sulasalmi, R. Mattila, and T. Fabritius: Steel Res. Int., 2019, vol. 90, pp. 1–15.

    Google Scholar 

  56. E.K. Ramasetti, V.V. Visuri, P. Sulasalmi, T. Palovaara, A.K. Gupta, and T. Fabritius: Steel Res. Int., 2019, vol. 90, pp. 1–13.

    Google Scholar 

  57. E.K. Ramasetti, V.V. Visuri, P. Sulasalmi, T. Fabritius, J. Savolainen, M. Li, and L. Shao: Metals (Basel). https://doi.org/10.3390/met9101048.

  58. F. Tan, Z. He, S. Jin, L. Pan, Y. Li, and B. Li: Steel Res. Int., 2020, vol. 91, pp. 1–8.

    Article  Google Scholar 

  59. B. Trummer, W. Fellner, A. Viertauer, L. Kneis, and G. Hackl: in UNITECR, Vienna, Austria, September 15-18, 2015, pp. 1–4.

  60. S. Chatterjee and K. Chattopadhyay: Metall. Mater. Trans. B Process Metall. Mater. Process. Sci., 2016, vol. 47, pp. 508–21.

  61. J. Han, S. Heo, D. Kam, B. You, J. Pak, and H. Song: ISIJ Int., 2001, vol. 41, pp. 1165–73.

    Article  CAS  Google Scholar 

  62. H. Liu, Z. Qi, and M. Xu: Steel Res. Int., 2011, vol. 82, pp. 440–58.

    Article  CAS  Google Scholar 

  63. M. Thunman, S. Eckert, O. Hennig, J. Björkvall, and D. Sichen: Steel Res. Int., 2007, vol. 78, pp. 849–56.

    Article  CAS  Google Scholar 

  64. P. Valentin, C. Bruch, Y. Kyrylenko, H. Köchner, and C. Dannert: Steel Res. Int., 2009, vol. 80, pp. 552–8.

    CAS  Google Scholar 

  65. P. Valentin, C. Bruch, and J. Gaule: Steel Res. Int., 2009, vol. 80, pp. 746–52.

    CAS  Google Scholar 

  66. C.E. Grip and L. Jonsson: Scand. J. Metall., 2003, vol. 32, pp. 113–22.

    Article  CAS  Google Scholar 

  67. W. Liu, H. Tang, S. Yang, M. Wang, J. Li, Q. Liu, and J. Liu: Metall. Mater. Trans. B Process Metall. Mater. Process. Sci., 2018, vol. 49, pp. 2681–91.

  68. Subagyo and G.A. Brooks: ISIJ Int., 2003, vol. 43, pp. 1286–88.

  69. X.D. Xu, G. Brooks, W. Yang, and S. Curic: Ironmak. Steelmak., 2010, vol. 37, pp. 620–3.

    Article  CAS  Google Scholar 

  70. Yang, Jin, Zhu, Dong, Lin, Cheng, Li, Sun, Pan, and Cai: Processes, 2019, vol. 7, p. 479.

  71. P. Shi, Y. Tian, L. Xu, W. Guo, and S. Qiu: China Metall., 2021, vol. 31, pp. 30–6.

    Google Scholar 

  72. H. Tang, J. Liu, S. Zhang, X. Guo, and J. Zhang: Ironmak. Steelmak., 2019, vol. 46, pp. 405–15.

    Article  CAS  Google Scholar 

  73. K. Ogawa and T. Onoue: ISIJ Int., 1989, vol. 29, pp. 148–53.

    Article  CAS  Google Scholar 

  74. U. Sand, H. Yang, J.E. Eriksson, and R.B. Fdhila: Steel Res. Int., 2009, vol. 80, pp. 441–9.

    CAS  Google Scholar 

  75. Y. Pan, D. Guo, J. Ma, W. Wang, F. Tang, and C. Li: ISIJ Int., 1994, vol. 34, pp. 794–801.

    Article  CAS  Google Scholar 

  76. S. Chatterjee, D. Li, and K. Chattopadhyay: Steel Res. Int., 2017, vol. 88, pp. 1–12.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto N. Conejo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted April 27, 2021; accepted October 8, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Conejo, A.N., Feng, W. Ladle Eye Formation Due to Bottom Gas Injection: A Reassessment of Experimental Data. Metall Mater Trans B 53, 999–1017 (2022). https://doi.org/10.1007/s11663-021-02355-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-021-02355-8

Navigation