Skip to main content
Log in

Quantitative Characterization of Flow-Induced Erosion of Tundish Refractory Lining via Water Model Experiment and Numerical Simulation

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

A water model experiment and a transient 3D numerical model were designed and implemented to quantitatively evaluate the flow-induced erosion behavior of the refractory lining in a continuous casting tundish. A relationship between the erosion rate and flow characteristic parameters was proposed and experimentally verified. Boric acid tablets were used in the water model experiment to determine the flow-induced erosion rate, and the numerical model defined the two-phase flow pattern. The results indicate that the impacting and rubbing effects caused by the fluid flow can be quantitatively characterized by the turbulent kinetic energy and wall shear stress. The proposed empirical dependence describes the erosion rate of the boric acid tablet with acceptable accuracy. The most serious erosion occurs inside the turbulence inhibitor, and the erosion rate sharply drops and steadily reduces with the water flow outside the turbulence inhibitor. The influence of casting speed on the refractory erosion rate is also quantitatively analyzed using the developed model with the introduction of the proposed correction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

\(C_{{\text{f}}}\) :

Skin friction coefficient

\(c_{{\text{t}}}\) :

Dimensionless concentration of tracer

\(D_{\varphi }\) :

Diffusion coefficient of tracer in water (m2/s)

\(\vec{F}_{{{\text{ST}}}}\) :

Interfacial tension (N/m3)

\(p\) :

Pressure (Pa)

\(Re\) :

Reynolds number

\(R_{{\text{t}}}\) :

Turbulent kinetic energy erosion rate (kg/s)

\(R_{{\text{w}}}\) :

Wall shear stress erosion rate (kg/s)

\(R_{{{\text{overall}}}}\) :

Total erosion rate (kg/s)

\(Sc_{{\text{t}}}\) :

Turbulence Schmidt number

\(t\) :

Time (s)

\(\Delta t\) :

Time step (s)

\(V_{{{\text{cell}}}}\) :

Volume of a computational cell (m3)

\(\vec{v}\) :

Velocity (m/s

\(\alpha\) :

Volume fraction of air

\(\bar{\mu }\) :

Dynamic viscosity (Pa s)

\(\mu _{{\text{t}}}\) :

Turbulent viscosity (m2/s)

\(\bar{\rho }\) :

Density of mixture phase (kg/m3)

\(\rho _{{{\text{ba}}}}\) :

Density of boric acid tablet (kg/m3)

\(\rho _{{\text{w}}}\) :

Density of water (kg/m3)

\(\bar{\phi }\) :

Physical property of mixture phase

\(\phi _{{\text{a}}}\) :

Physical property of air

\(\phi _{{\text{w}}}\) :

Physical property of water

References

  1. L. Zhang and B.G. Thomas: ISIJ Int., 2003, vol. 43, pp. 271–91. .

    Article  CAS  Google Scholar 

  2. K. Badr, M. Tomas, M. Kirschen, and G. Mcllveney: RHI Bull., 2011, vol. 1, pp. 43–50. .

    Google Scholar 

  3. M.C. Mantovani, L.R. Moraes Jr., R. Leandro da Silva, E.F. Cabral, E.A. Possente, C.A. Barbosa, and B.P. Ramos: Ironmak. Steelmak., 2013, vol. 40, pp. 319–25. .

    Article  CAS  Google Scholar 

  4. K.N. Vdovin, V.V. Tochilkin, and V.V. Tochilkin: Refract. Ind. Ceram., 2016, vol. 57, pp. 221–3. .

    Article  CAS  Google Scholar 

  5. V. Frishfelds, J.G.I. Hellström, T.S. Lundström, and H. Mattsson: Transp. Porous Media., 2011, vol. 89, pp. 441–57. .

    Article  CAS  Google Scholar 

  6. R. Barker, X. Hu, A. Neville, and S. Cushnaghan: Corrosion., 2013, vol. 69, pp. 193–203. .

    Article  CAS  Google Scholar 

  7. W. Dai, S. Cremaschi, H.J. Subramani, and H.J. Gao: Wear., 2018, vol. 408–409, pp. 108–19. .

    Article  Google Scholar 

  8. E.V. Senatore, W. Taleb, J. Owen, Y. Hua, J.A.C. Ponciano Gomes, R. Barker, and A. Neville: Wear., 2018, vol. 404–405, pp. 143–52. .

    Article  Google Scholar 

  9. B.C. van Prooijen and J.C. Winterwerp: J. Geophys. Res., 2010, vol. 115, p. C01005. .

    Google Scholar 

  10. J.C. Winterwerp, W.G.M. van Kesteren, B. van Prooijen, and W. Jacobs: J. Geophys. Res., 2012, vol. 117, p. C10020. .

    Google Scholar 

  11. Q. Wang, Y. Liu, A. Huang, W. Yan, H.Z. Gu, and G.Q. Li: Metall. Mater. Trans. B., 2020, vol. 51B, pp. 276–92. .

    Article  Google Scholar 

  12. A.M. Guzmán, D.I. Martínez, and R. González: Eng. Fail. Anal., 2014, vol. 46, pp. 188–95. .

    Article  Google Scholar 

  13. K. Takatani, T. Inada, and K. Takata: ISIJ Int., 2001, vol. 41, pp. 1139–45. .

    Article  CAS  Google Scholar 

  14. M.Y. Zhu, W.T. Lou, and W.L. Wang: Acta Metall. Sin., 2018, vol. 54, pp. 131–50. (in Chinese).

    CAS  Google Scholar 

  15. P.H.R. Vaz de Melo, J.J.M. Peixoto, G.S. Galante, B.H.M. Loiola, C.A. da Silva, I.A. da Silva, and V. Seshadri: J. Mater. Res. Technol., 2019, vol. 8, pp. 3764–71. .

    Article  Google Scholar 

  16. S.Y. Hu, R. Zhu, R.Z. Liu, K. Dong, and Z.H. Li: Metall. Mater. Trans. B., 2018, vol. 49B, pp. 3317–29. .

    Article  Google Scholar 

  17. C.W. Hirt and B.D. Nichols: J. Comput. Phys., 1981, vol. 39, pp. 201–25. .

    Article  Google Scholar 

  18. H.T. Ling, R. Xu, H.J. Wang, L.Z. Chang, and S.T. Qiu: ISIJ Int., 2020, vol. 60, pp. 499–508. .

    Article  CAS  Google Scholar 

  19. S. Neumann, A. Asad, T. Kasper, and R. Schwarze: Metall. Mater. Trans. B., 2019, vol. 50B, pp. 2334–42. .

    Article  Google Scholar 

  20. C. Chen, L.T.I. Jonsson, A. Tilliander, G.G. Cheng, and P.G. Jönsson: Metall. Mater. Trans. B., 2015, vol. 46B, pp. 169–90. .

    Article  Google Scholar 

  21. P.Y. Ni, L.T.I. Jonsson, M. Ersson, and P.G. Jönsson: Steel Res. Int., 2017, vol. 83, p. 1600155. .

    Article  Google Scholar 

  22. Z.Q. Liu, A. Vakhrushev, M. Wu, A. Kharicha, A. Ludwig, and B.K. Li: Metall. Mater. Trans. B., 2019, vol. 50B, pp. 543–54. .

    Article  Google Scholar 

  23. Z.Q. Liu, Y.D. Wu, and B.K. Li: Powder Technol., 2020, vol. 374, pp. 470–81. .

    Article  CAS  Google Scholar 

  24. H.C. Zhu, H.B. Li, Z.Y. He, H. Feng, and Z.H. Jiang: Metall. Mater. Trans. B., 2020, vol. 51B, pp. 2976–92. .

    Article  Google Scholar 

Download references

Acknowledgments

The authors appreciated the financial support from National Natural Science Foundation of China (Grant No. U1860205). Thanks are also given to the Baoshan Iron and Steel Co., Ltd. for supporting plant data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangqiang Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted December 21, 2020; accepted June 7, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Tan, C., Huang, A. et al. Quantitative Characterization of Flow-Induced Erosion of Tundish Refractory Lining via Water Model Experiment and Numerical Simulation. Metall Mater Trans B 52, 3265–3275 (2021). https://doi.org/10.1007/s11663-021-02254-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-021-02254-y

Navigation