Skip to main content
Log in

Fluid–Solid Coupling Simulation on the Temperature Distribution of Tuyere Used for Oxygen Bottom Blowing Converter

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

For an oxygen bottom blowing converter, a high-temperature fire spot zone forms above the tuyere owing to oxygen reaction. The bottom blowing tuyere and surrounding brick are simultaneously heated by high-temperature fire spot and flowing molten steel. High-speed fluids flowing in the inner tube and the annular gap of the tuyere can remove part of the heat transferred from the fire spot zone and molten steel, playing a vital role in cooling the tuyere. To determine the temperature distributions of the tuyere and surrounding brick under the condition of oxygen bottom blowing, a fluid–solid coupling heat transfer numerical model that considers both the radiation of the fire spot and convection of the molten steel was established in this study. The simulation results agree well with previous experimental results; thus, the numerical model was validated. Utilizing the validated model, the influences of the tuyere inner tube material and fire spot zone temperature on the tuyere temperature distribution were studied in detail. Along with an increase in the material thermal conductivity, the maximum temperature of the inner tube at the hot face decreased, verifying the superiority of copper as the inner tube. More importantly, it was found that reducing the fire spot zone temperature by mixing CO2 in the bottom blowing oxygen fundamentally alleviated the burning loss of the tuyere and the surrounding brick.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. J.K. Brimacombe: Proc. of the Savard/Lee International Symposium on Bath Smelting, TMS, 1992.

  2. G. Savard and R.G.H Lee: US Patent 4336064, 1982.

  3. E. Fritz: Proc. of International Symposium on Modern Developments in Steelmaking, NML, Jamshedpur, 1981.

  4. K. Nakanishi, and K. Sanbongi: Tetsu-to- Hagane, 1979, vol. 65, pp. 138-147.

    Article  CAS  Google Scholar 

  5. K. Nakanishi, T. Nozaki, and R. Uchimura: Kawasaki Steel Technical Report, 1980, pp. 1–13.

  6. J. Pearce and E.G. Schempp: Proc. of International Symposium on Modern Developments in Steelmaking, NML, Jamshedpur, 1981.

  7. K. Deng: Iron & Steel, 1979, vol. 26, pp. 61-70

    Google Scholar 

  8. Y. Li: Iron & Steel, 1980, vol. 27, pp. 1-9

    Google Scholar 

  9. H. Sun, Y. Liu, and M. Lu: Ironmaking & Steelmaking, 2016, vol. 43, pp. 697-704.

    Article  CAS  Google Scholar 

  10. G. Wimmer, K. Pastucha, and E. Wimmer: The 6th International Congress on Science and Technology of Steelmaking, 2015.

  11. Y. Zhong, L. Guan, and M. Lin: Iron & Steel, 1979, vol. 26, pp.34-44

    Google Scholar 

  12. M. Abe, Y. Kishimoto, and S. Takeuchi: Tetsu- to- Hagane, 2009, vol. 82, pp. 743-748.

    Article  Google Scholar 

  13. S. Sun, D. Liao, N. Pyke: Iron Steel Tech., 2008, vol. 5, pp. 36-42.

    CAS  Google Scholar 

  14. T. Kosukegawa, T. Imai, and F. Sudo: Proc. of International Symposium on Modern Developments in Steelmaking, NML, Jamshedpur, 1981.

  15. D. Liao, S. Sun, and S. Waterfall: The 6th International Congress on Science and Technology of Steelmaking, 2015.

  16. G. Denier, J.C. Frosjjean, and H. Zanetta: Ironmaking and steelmaking, 1980, vol. 7, pp. 123-126.

    CAS  Google Scholar 

  17. N. Harada: Tetsu- to- Hagane, 1983, vol. 69, pp. 1010-1011.

    Google Scholar 

  18. R. Ruther, and P. Opel: Neue Hutte, 1978, vol. 23, pp. 254-257.

    Google Scholar 

  19. I.V. Belov: Izv. Akad. Nauk. SSSR, 1997, vol.4, pp. 16-21.

    Google Scholar 

  20. K. Scheidig, R. Guther, and G. Fromer: Neue Hutte, 1980, vol. 25, pp. 207-210.

    CAS  Google Scholar 

  21. N.B. Ballal, and A. Ghosh: Metall. Trans B, 1981, vol. 12, pp. 525-534.

    Article  Google Scholar 

  22. Q. Song, S. Sun, and Y. Li: J. of Iron and Steel Res., 1992, vol. 12, pp. 33-40

    Google Scholar 

  23. Y. Wei, and L. Dong: J. Iron and Steel Res., 1991, vol. 11, pp. 9-16

    Google Scholar 

  24. Y. Li, Q. Song, S. Sun, and Y. Lu: Steelmaking, 1990, vol. 6, pp. 41-45

    Google Scholar 

  25. L. Wen, R. Guo, D. Chen, and J. Li: The Chinese J. of Process Eng., 2009, vol. 34, pp. 379-383

    Google Scholar 

  26. G. Zhu, Z. Yang, B. Wang, and H. Zhao: J. Univ. Sci. Technol. Beijing, 2007, vol. 53, pp. 325-328.

    Google Scholar 

  27. T.H. Shih, W.W. Liou, A. Shabbir, Z. Yang, and J. Zhu: Computers Fluids, 1995, vol. 24, pp. 227-238

    Article  Google Scholar 

  28. S.E. Kim, D. Choudhury, and B. Patel: Proc. of the ICASE/LARC/AFOSR Symposium on Modeling Complex Turbulent Flows, 1997.

  29. W.C. Reynolds: Lecture Notes for Von Karman Institute Award Report, 1987.

  30. R. Siegel and J.R. Howell: Thermal Radiation Heat Transfer, CRC Press, Boca Raton, 2011. ISBN 0-89116-506-1

  31. N. Katoh and T. Kuriyama: JSAE Conf. Proc., 1994.

  32. X. Ma, H. Meng, and X. Gao: Iron Steel Vanadium Titanium, 2004, vol. 25, pp. 64-68.

    CAS  Google Scholar 

  33. A. Yan: J. Wuhan Univ. Sci. Technol., 2010, vol. 33, pp. 255-258.

    Google Scholar 

  34. Z. Guo, X. Ren, and J Zhou: J. of Iron and Steel Res., 2003, vol. 15, pp. 1-4.

    Google Scholar 

  35. Bakker, J., and Sinnema, S.: Refractories in Steelmaking, 2001, vol. 27, pp. 165-167.

    Google Scholar 

  36. S. Uchida, and O. Nomura: Taikabutsu Overseas, 2002, vol. 22, pp. 86–94.

    Google Scholar 

  37. O. Volkova, and D.Janke: ISIJ Int., 2007, vol. 43, pp.1185-1190.

    Article  Google Scholar 

  38. L. Guan, and C. Wang: Industrial Heating, 2004, vol. 33, pp. 14-16

    Google Scholar 

  39. M. Lv, R. Zhu, and X. Wei: Steel Research Int., 2012, vol. 83, pp. 11-15.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to extend their sincere grateful for the support by National Natural Science Foundation of China (Nos. 51574021, 51474024, and 51604022).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rong Zhu.

Additional information

Manuscript submitted April 30, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, S., Zhu, R., Liu, R. et al. Fluid–Solid Coupling Simulation on the Temperature Distribution of Tuyere Used for Oxygen Bottom Blowing Converter. Metall Mater Trans B 49, 3317–3329 (2018). https://doi.org/10.1007/s11663-018-1375-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-018-1375-8

Keywords

Navigation