Skip to main content
Log in

Fluid Flow Induced Internal Erosion within Porous Media: Modelling of the No Erosion Filter Test Experiment

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

An investigation of the potential to numerically model the no erosion filter test is performed here, where the flow through a large ensemble of particles is considered by applying minimisation of dissipation rate of energy on the ensemble that is discretised with modified Voronoi diagrams and Delaunay triangulation. Low-Reynolds number simulations are applied to each part of the Voronoi diagram using computational fluid dynamics. The mechanical friction between particles is modelled by increasing the effective viscosity for closely spaced particles. Microscopic mechanisms for successful and unsuccessful sealing of filters are obtained. The numerical results agree with previously presented experimental observations by Sherard and Dunnigan. A conformity is that the sealing starts from the end of the channel and continues outwards in the radial direction. The sealing implies that the permeability can be reduced several orders of magnitude during a test.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams K.L., Russel W.B., Rebenfeld L.: Radial penetration of a viscous liquid into a planar anisotropic porous media. Int. J. Multiph. Flow. 14, 203–215 (1988)

    Article  Google Scholar 

  • Bear J.: Dynamics of Fluids in Porous Media. Dover Publications Inc., New York (1972)

    Google Scholar 

  • Chen X., Papathanasiou D.: The transverse permeability of disordered fiber arrays: a statistical correlation in terms of the mean nearest interfiber spacing. Transp. Porous Media 71, 233–251 (2008)

    Article  Google Scholar 

  • Day R.A., Hight D.W., Potts D.M.: Finite element analysis of construction stability of Thika Dam. Comput. Geotech. 23, 205–219 (1998)

    Article  Google Scholar 

  • Dullien F.A.L.: Porous Media: Fluid Transport and Pore Structure. Academic press, San Diego (1992)

    Google Scholar 

  • ERCOFTAC (European Research Community On Flow, Turbulence And Combustion): Special Interest Group on Quality and Trust in Industrial CFD: Best Practice Guidelines, Version 1.0, Edited by Casey, M. and Wintergerste, T (2000)

  • Fell R., MacGregor P., Stapledon D., Bell G.: Geotechnical Engineering of Dams. Balkema, Leiden (2005)

    Google Scholar 

  • Foster M., Fell R., Spannagle M.: The statistics of embankment dam failures and accidents. Can. Geotech. J. 37, 1000–1024 (2000)

    Article  Google Scholar 

  • Foster M., Fell R., Spannagle M.: A method for assessing the relative likelihood of failure of embankment dams by piping. Can. Geotech. J. 37, 1025–1061 (2000)

    Article  Google Scholar 

  • Foster M., Fell R.: Assessing embankment dam filters that do not satisfy design criteria. J. Geotech. Geoenviron. Eng. 127(4), 398–407 (2001)

    Article  Google Scholar 

  • Frishfelds V., Lundström T.S., Jacovics A.: Permeability of clustered fibre networks: modelling of unit cell. Mech. Compos. Mater. 39, 265–272 (2003)

    Article  Google Scholar 

  • Frishfelds V., Lundström T.S., Jakovics A.: Lattice gas analysis of liquid front in non-crimp fabrics. Transp. Porous Media 84, 75–93 (2010)

    Article  Google Scholar 

  • Gebart B.R.: Permeability of unidirectional reinforcements for RTM. J. Compos. Mater. 26, 1100–1133 (1992)

    Article  Google Scholar 

  • Gebart B.R., Lidström P.: Measurement of in-plane permeability of anisotropic fiber reinforcements. Polym. Compos. 17, 43–51 (1996)

    Article  Google Scholar 

  • Ghidaglia C., Arcangelis L., Hinch J., Guazzelli E.: Hydrodynamic interactions in deep bed filtration. Phys. Fluids 8, 6–14 (1996)

    Article  Google Scholar 

  • Gray W.G.: General conservation equations for multi-phase systems: 4. Constitutive theory including phase change. Adv. Water Resour. 6, 130–140 (1983)

    Article  Google Scholar 

  • Hassanizadeh M., Gray W.G.: General conservation equations for multi-phase systems: 3. Constitutive theory for porous media flow. Adv. Water Resour. 3, 25 (1980)

    Article  Google Scholar 

  • Hellström J.G.I., Marjavaara B.D., Lundström T.S.: Parallel CFD simulations of an original and redesigned hydraulic turbine draft tube. Adv. Eng. Softw. 38, 338–344 (2007)

    Article  Google Scholar 

  • Hellström J.G.I., Frishfelds V., Lundström T.S.: Mechanisms of flow-induced deformation of porous media. J. Fluid Mech. 664, 220–237 (2010)

    Article  Google Scholar 

  • Hellström J.G.I., Jonsson P.J.P., Lundström T.S.: Laminar and turbulent flow through an array of cylinders. J. Porous Media 13, 1073–1085 (2010)

    Article  Google Scholar 

  • Huang T.K.: Stability analysis of an earth dam under steady state seepage. Comput. Struct. 58, 1075–1082 (1996)

    Article  Google Scholar 

  • Kershaw T.N.: The three dimensions of water flow in press felts. Tappi J. 55, 880–887 (1972)

    Google Scholar 

  • Lekakou C., Johari M.A.K., Norman D., Bader M.G.: Measurement techniques and effects on in-plane permeability of woven cloths in resin transfer moulding. Composites A 27, 401–408 (1996)

    Article  Google Scholar 

  • Lundström T.S., Gebart B.R.: Effect of perturbation of fibre architecture on permeability inside fibre tows. J. Compos. Mater. 29, 424–443 (1995)

    Article  Google Scholar 

  • Lundström T.S., Gebart B.R., Sandlund E.: In-plane permeability measurements on fibre reinforcements by the multi-cavity parallel flow technique. Polym. Compos. 20, 146–154 (1999)

    Article  Google Scholar 

  • Lundström T.S., Stenberg R.S., Bergström R., Partanen H., Birkeland P-A.: In-plane permeability measurements: a nordic round-robin study. Composites A 31, 29–43 (2000)

    Article  Google Scholar 

  • Lundström T.S., Toll S., Håkanson J.M.: Measurements of the permeability tensor of compressed fibre beds. Transp. Porous Media 47, 363–380 (2002)

    Article  Google Scholar 

  • Lundström T.S., Frishfelds V., Jakovics A.: A statistical approach to permeability of clustered fibre reinforcements. J. Compos. Mater. 38, 1137–1149 (2004)

    Article  Google Scholar 

  • Lundström T.S., Sundlöf H., Holmberg J.A.: Modelling of power-law fluid flow through fibre bed. J. Compos. Mater. 40, 283–296 (2006)

    Article  Google Scholar 

  • Mattsson, H., Hellström, J.G.I., Lundström, T.S., Knutsson, S.: On numerical modelling of internal erosion in embankment dams. In: Proceedings of the 1st International Symposium on Rockfill Dams, 18–21 October, Chengdu, China (2009)

  • Mellah R., Auvinet G., Masrouri F.: Stochastic finite element method applied to non-linear analysis of embankments. Probab. Eng. Mech. 15, 251–259 (2000)

    Article  Google Scholar 

  • Ng A.K.L., Small J.C.: A case study of hydraulic fracturing using finite element methods. Can. Geotech. J. 36, 861–875 (1999)

    Article  Google Scholar 

  • Parnas R.S., Salem A.J.: A comparison of the unidirectional and radial in-plane flow of fluids through woven composite reinforcements. Polym. Compos. 14, 383–394 (1993)

    Article  Google Scholar 

  • Parnas R.S., Howard J.G., Luce T.L., Advani S.G.: Permeability characterization. Part 1: a proposed standard reference fabric for permeability. Polym. Compos. 16, 429–445 (1995)

    Article  Google Scholar 

  • Pikulik I.I., Gilbert D., McDonald J.D., Henderson J.R.: A new instrument for measuring the permeability of paper-machine clothing. Tappi J. 74, 169–176 (1991)

    Google Scholar 

  • Scheidegger A.E.: The Physics of Flow Through Porous Media. University of Toronto Press, Toronto (1972)

    Google Scholar 

  • Sharif N.H., Wiberg N.E., Levenstam M.: Free surface flow through rock-fill dams analyzed by FEM with level set approach. Comput. Mech. 27, 233–243 (2001)

    Article  Google Scholar 

  • Sheng-Hong C.: Adaptive FEM analysis for two-dimensional unconfined seepage problems. J. Hydrodyn. 8, 60–66 (1996)

    Google Scholar 

  • Sherard J.L.: Hydraulic fracturing in embankment dams. J. Geotech. Eng. 112, 905–927 (1986)

    Article  Google Scholar 

  • Sherard J.L., Dunningan L.P., Talbot J.R.: Filters for silts and clays. J. Geotech. Eng. 110, 701–718 (1984)

    Article  Google Scholar 

  • Sherard J.L., Dunnigan L.P.: Critical filters for impervious soils. J. Geotech. Eng. 115, 927–947 (1989)

    Article  Google Scholar 

  • Tucker C.L. III, Dessenberger R.B.: Governing equations for flow and heat transfer in stationary fiber beds. In: Advani, S.G. (eds) Flow and Rheology in Polymer Composites, Elsevier Science B.V., Amsterdam (1994)

    Google Scholar 

  • Weitzenböck J.R., Shenoi R.A., Wilson P.A.: Measurement of three-dimensional permeability. Composites A 29, 159–169 (1998)

    Article  Google Scholar 

  • Wörman A., Xu S.: Stochastic analysis of internal erosion in soil structures – implications for risk assessments. J. Hydraul. Eng. 127, 419–428 (2001)

    Article  Google Scholar 

  • Young W.B., Wu S.F.: Permeability measurement of bidirectional woven glass fibers. J. Reinf. Plast. Compos. 14, 1108–1119 (1995)

    Google Scholar 

  • Zhang L., Du J.: Effects of abutment slopes on the performance of high rockfill dams. Can. Geotech. J. 34, 489–497 (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Frishfelds.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frishfelds, V., Hellström, J.G.I., Lundström, T.S. et al. Fluid Flow Induced Internal Erosion within Porous Media: Modelling of the No Erosion Filter Test Experiment. Transp Porous Med 89, 441–457 (2011). https://doi.org/10.1007/s11242-011-9779-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-011-9779-9

Keywords

Navigation