Skip to main content
Log in

A Critical Review of Limitations of Slag Capacity Concepts in Metallurgical Applications by Taking Sulfide and Phosphate Capacities as Examples

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

A Correction to this article was published on 29 March 2021

This article has been updated

Abstract

The desulfurization and dephosphorization performances have been considered to be the most challenging operations for refining ultra-clean steel. The distribution ratios of sulfur and phosphorus in the form of \( L_{i} = {{\left( {\% \, i} \right)} \mathord{\left/ {\vphantom {{\left( {\% \, i} \right)} {\left[ {\% \, i} \right]}}} \right. \kern-0pt} {\left[ {\% \, i} \right]}} \) as well as slag capacity concepts of sulfide and phosphate capacities in the form of \( C_{{i^{m - } }} \propto (\% \, i^{m - } ) \) have been extensively studied and widely applied for the description of desulfurization and dephosphorization abilities and potentials, respectively. However, the intrinsic limitations of two slag capacity concepts as sulfide and phosphate capacities regardless of slag oxygen potential \( p_{{{\text{O}}_{2} }} \) have seriously limited their direct applications into guiding the practical refining operations compared with the partitions or distribution ratios \( L_{i} \). The theoretical limitations of sulfide and phosphate capacities have been extensively reviewed and critically assessed by comparison with the distribution ratios \( L_{i} \) in this contribution by taking two preferred thermodynamic conditions of both basic oxides concentration or slag basicity and slag oxygen potential as criteria. Meanwhile, the merits of two slag capacity concepts as measures for describing slag basicity like optical basicity have also been reviewed to be disruptive because the ratios of activity of free oxygen ion \( a_{{{\text{O}}^{2 - } }} \) in slags to activity coefficients \( f_{{{\text{H}},i}} \) of sulfide and monomer phosphate \( {\text{PO}}_{4}^{3 - } \) in slags as implicit parameters in the defined two slag capacity concepts cannot hold constants in most complex slags. Furthermore, the limitations of phosphate capacity in two ways have been restated. Moreover, the oxygen potential \( p_{{{\text{O}_{2}} }} \) shows a great effect on plots of the desulfurization and dephosphorization abilities against two slag capacity concepts of slags at a given temperature. The abnormally higher oxygen potential \( p_{{{\text{O}_{2}} }} \) can result in a suppression of the desulfurization ability of slags with a greater desulfurization potential, while the unreasonably smaller oxygen potential \( p_{{{\text{O}_{2}} }} \) can lead to a diminishing of the dephosphorization ability of slags with a larger dephosphorization potential. It has been verified by five case-studies covering desulfurization and dephosphorization operations that the partitions or distribution ratios \( L_{i} \) related to equilibrium quotients \( k_{i} \) of desulfurization and dephosphorization reactions of Fe-based melts by slags can be in good accordance with two preferred thermodynamic conditions. The reasonable application of two slag capacity concepts is recommended to estimate or determine the distribution ratios between slags and Fe-based melts with the aid of activity \( a_{{\% ,{\text{O}}}} \) of oxygen and activity coefficient \( f_{\% ,i} \) of sulfur and phosphorus in Fe-base melts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Change history

Abbreviations

\( a_{i} \) :

Activity of element i or compound i, (–)

\( a_{{{\text{R, }}i}} \) :

Activity of element i or compound i relative to pure matter i (l or s or g) as the standard state with mole fraction \( x_{i} \) as concentration unit and following Raoult’s law under the condition of taking ideal solution as reference state, i.e., \( a_{{{\text{R, }}i}} = \gamma_{i} x_{i} \), (–)

\( a_{\%,i} \) :

Activity of element i referred to 1 mass percentage of element i as the standard state with mass percentage [% i] as concentration unit and obeying Henry’s law under the condition of taking infinitely dilute ideal solution as reference state, i.e., \( a_{\%,i} = f_{\%,i} [\% \, i] \), (–)

\( a_{{{\text{H, }}i}} \) :

Activity of element i relative to hypothetical pure matter i (l or s or g) as the standard state with mole fraction \( x_{i} \) as concentration unit and conforming to Henry’s law under the condition of taking infinitely dilute ideal solution as reference state, i.e., \( a_{{{\text{H, }}i}} = f_{{{\text{H, }}i}} x_{i} \), (–)

B :

Binary slag basicity expressed as \( B = {{(\% {\text{ CaO}})} \mathord{\left/ {\vphantom {{(\% {\text{ CaO}})} {(\% {\text{ SiO}}_{2} )}}} \right. \kern-0pt} {(\% {\text{ SiO}}_{2} )}} \), (–)

\( B^{\prime} \) :

Modified binary slag basicity expressed as \( B^{\prime} = {{x_{\text{CaO}} } \mathord{\left/ {\vphantom {{x_{\text{CaO}} } {x_{{{\text{SiO}}_{2} }} }}} \right. \kern-0pt} {x_{{{\text{SiO}}_{2} }} }} \), (–)

\( B_{\text{carb}} \) :

Suggested slag basicity from carbonate capacity ratio as \( B_{\text{carb}} = {{C_{{{\text{CO}}_{3}^{2 - } }} } \mathord / {\vphantom {{C_{{{\text{CO}}_{3}^{2 - } }} } {C_{{{\text{CO}}_{3}^{2 - } }}^{ * } }}} \kern-0pt {C_{{{\text{CO}}_{3}^{2 - } }}^{ * } }} \) by Wagner, (–)

\( B_{\text{sulf}} \) :

Suggested slag basicity from sulfide capacity ratio as \( B_{\text{sulf}} = {{C_{{{\text{S}}^{2 - } }} } \mathord / {\vphantom {{C_{{{\text{S}}^{2 - } }} } {C_{{{\text{S}}^{2 - } }}^{ * } }}} \kern-0pt {C_{{{\text{S}}^{2 - } }}^{ * } }} \) by Wagner, (–)

\( {\text{CB}}i \) :

Complex slag basicity in the ith expression, (–)

\( {\text{BO}}i \) :

Equivalent basic oxides of components in the ith expression or named as “excess base” by Chipman, (–)

\( B^{\text{xs}} \) :

Excess base related to the ion-oxygen attractions for oxides expressed as \( B^{\text{xs}} = \Sigma \left( {x_{i} b_{i} } \right) \), (–)

\( b_{i} \) :

Coefficient of oxide i related to defined excess base as \( B^{\text{xs}} \), (–)

\( C_{{{\text{S}}^{2 - } }} \) :

Sulfide capacity of slags based on gas–slag equilibrium, or expressed as \( C_{{{\text{S}}^{2 - } }}^{\text{I}} \), (–)

\( C_{{{\text{S}}^{2 - } ,{\text{ index}}}} \) :

Sulfide capacity index of slags based on slag–metal equilibrium, or expressed as \( C_{{{\text{S}}^{2 - } }}^{\text{II}} \), (–)

\( C_{{{\text{PO}}_{4}^{3 - } }} \) :

Phosphate capacity of slags based on gas–slag equilibrium, or expressed as \( C_{{{\text{PO}}_{4}^{3 - } }}^{\text{I}} \), (–)

\( C_{{{\text{PO}}_{4}^{3 - } ,{\text{ index}}}} \) :

Phosphate capacity index of slags based on slag–metal equilibrium, or expressed as \( C_{{{\text{PO}}_{4}^{3 - } }}^{\text{II}} \), (–)

\( C_{{i^{m - } }} \) :

Capacity of anionic ion \( i^{m - } \) with m– valence absorbed impurity in slags from gas–slag reaction, which is described as \( C_{{i^{m - } }} \propto (\% \, i^{m - } ) \), (–)

\( C_{{i^{m - } , {\text{ index}}}} \) :

Capacity index of anionic ion \( i^{m - } \) with m– valence absorbed impurity in slags from slag–metal reaction, which is described as \( C_{{i^{m - } }} \propto (\% \, i^{m - } ) \), (–)

\( e_{i}^{j} \) :

First-order activity interaction coefficient of element j to element i related to activity coefficient \( f_{\%,i} \), (–)

\( f_{\%,i} \) :

Activity coefficient of element i in liquid iron related to activity \( a_{\%,i} \), (–)

\( f_{{{\text{H, }}i}} \) :

Activity coefficient of element i in liquid iron related to activity \( a_{{{\text{H, }}i}} \), (–)

\( f\left( {i,j} \right) \) :

Function with i and j as independent variables, (–)

\( \Delta_{\text{r}} G_{i}^{\Theta } \) :

Standard molar Gibbs free energy change of reaction for forming component i or structural unit i, (J)

\( K_{i}^{\Theta } \) :

Standard equilibrium constant of chemical reaction for forming component i or structural unit i, (–)

\( k_{i} \) :

Equilibrium quotient of chemical reaction for forming component i or structural unit i, (–)

\( L_{\text{S}} \) :

Sulfur partition or distribution ratio between slags and liquid iron, defined as \( L_{\text{S}} = {{(\% {\text{ S}})} \mathord{\left/ {\vphantom {{(\% {\text{ S}})} {[\% {\text{ S]}}}}} \right. \kern-0pt} {[\% {\text{ S]}}}} \), (–)

\( L_{\text{P}} \) :

Phosphorus partition or distribution ratio between slags and liquid iron, defined as \( L_{\text{P}} = {{(\% {\text{ P}}_{2} {\text{O}}_{5} )} \mathord / {\vphantom {{(\% {\text{ P}}_{2} {\text{O}}_{5} )} {[\% {\text{ P}}]^{2} }}} \kern-0pt {[\% {\text{ P}}]^{2} }} \), (–)

\( L_{\text{P}}^{\text{II}} \) :

Phosphorus partition or distribution ratio between slags and liquid iron, defined as \( {{L_{\text{P}}^{\text{II}} = (\% {\text{ PO}}_{4}^{3 - } )} \mathord{\left/ {\vphantom {{L_{\text{P}}^{\text{II}} = (\% {\text{ PO}}_{4}^{3 - } )} {[\% {\text{ P]}}}}} \right. \kern-0pt} {[\% {\text{ P]}}}} \equiv L_{\text{P}}^{\text{III}} \), (–)

\( L_{\text{P}}^{\text{IV}} \) :

Phosphorus partition or distribution ratio between slags and liquid iron, defined as \( L_{\text{P}}^{\text{IV}} = {{(\% {\text{ P}}_{2} {\text{O}}_{5} )} \mathord{\left/ {\vphantom {{(\% {\text{ P}}_{2} {\text{O}}_{5} )} {[\% {\text{ P]}}}}} \right. \kern-0pt} {[\% {\text{ P]}}}} \), (–)

\( L_{\text{P}}^{\text{V}} \) :

Phosphorus partition or distribution ratio between slags and liquid iron, defined as \( L_{\text{P}}^{\text{V}} = {{(\% {\text{ P}})} \mathord{\left/ {\vphantom {{(\% {\text{ P}})} {[\% {\text{ P]}}}}} \right. \kern-0pt} {[\% {\text{ P]}}}} \), (–)

\( M_{i} \) :

Relative atomic mass of element or molecule i, (–)

MeO:

Metal oxide as component in slags, (–)

\( n_{{{\text{O}},i}} \) :

Number of oxygen atoms in oxide i related to equivalent mole fraction of cation i \( X_{i} \) (–)

\( N_{i} \) :

Mass action concentration of structural unit i or ion couple i in slags based on the IMCT, (–)

\( N_{{{\text{Fe}}_{t} {\text{O}}}} \) :

Defined comprehensive mass action concentration of iron oxides in slags based on the IMCT, (–)

\( p_{i} \) :

Partial pressure of species i in gaseous phase, (Pa)

\( p^{\Theta } \) :

Standard pressure of gas at sea level and 273 K (0 °C) as 101,325 Pa, (Pa)

R :

Gas constant, (8.314 J/(mol·K))

\( r_{i}^{j} \) :

Second-order activity interaction coefficient of element j to element i, (–)

\( r_{i}^{j,k} \) :

Cross-product second-order activity interaction coefficient of element j and k to element i, (–)

T :

Absolute temperature, (K)

\( x_{i} \) :

Mole fraction of component i in slags, (–)

\( X_{i} \) :

Equivalent mole fraction of cation i expressed by \( X_{i} = {{\left( {n_{{{\text{O, }}i}} x_{i} } \right)} \mathord{\left/ {\vphantom {{\left( {n_{{{\text{O, }}i}} x_{i} } \right)} {\varSigma (n_{{{\text{O, }}i}} x_{i} )}}} \right. \kern-0pt} {\varSigma (n_{{{\text{O, }}i}} x_{i} )}} \), (–)

(% i):

Mass percentage of component i in slags, (\( \times \)10−2, –)

[% i]:

Mass percentage of element i in liquid iron, (\( \times \)10−2, –)

(i):

Species i in slag phase, (–)

[i]:

Species i in liquid iron phase, (–)

\( \gamma_{i} \) :

Activity coefficient of component or element i related to activity \( a_{{{\text{R}},i}} \), (–)

\( \varepsilon_{i}^{i} \) :

First-order activity interaction coefficient of component or element i in metallic melts related to activity coefficient \( \gamma_{i} \), (–)

\( \varLambda \) :

Optical basicity of slags, (–)

\( \varLambda_{\text{corr}} \) :

Corrected optical basicity of slags, (–)

\( \varLambda_{i} \) :

Optical basicity of component i in slags, (–)

\( \xi_{\text{interaction}}^{i - j} \) :

Interaction coefficient of component i to component j in slags embodied in the KTH model, (–)

References

  1. B. Sener, R. Hüsken, and J. Cappel: Iron Steel Technol., 2013, (4), pp. 147–58.

  2. [2] F.N.H. Schrama, E.M. Beunder, B.V. den Berg, Y.X. Yang, and R. Boom: Ironmaking Steelmaking, 2017, vol. 44 (5), pp. 333–343.

    Article  CAS  Google Scholar 

  3. M. Saqlain, M. Owais, M. Järvinen, V-V. Visuri, and T. Fabritius: Dephosphorization in ironmaking and oxygen steelmaking. Aalto University, 2018.

  4. F.D. Richardson and C.J.B. Fincham: J. Iron Steel Inst., 1954, vol. 178 (1), pp. 4–15.

  5. C.J.B. Fincham and F.D. Richardson: Proc. R. Soc. London. A, 1954, vol. 223A (1152), pp. 40–62.

  6. [6] C. Wagner: Metall. Trans. B, 1975, vol. 6 (3), pp. 405–409.

    Article  CAS  Google Scholar 

  7. X.M. Yang, T.Z. Liu, Z.C. Guo, X.P. Yv, and D.G. Wang: J. Iron Steel Res., 1995, vol. 7 (6), pp. 1–8.

  8. X.M. Yang, Z.C. Guo, D.G. Wang, and Y.S. Xie: Iron steel, 1996, vol. 31 (sulp.), pp. 25–31.

  9. [9] C.B. Shi, X.M. Yang, J.S. Jiao, C. Li, and H.J. Guo: ISIJ Int., 2010, vol. 50 (10), pp. 1362–72.

    Article  CAS  Google Scholar 

  10. [10] X.M. Yang, M. Zhang, C.B. Shi, G.M. Chai, and J. Zhang: Metall. Mater. Trans. B, 2012, vol. 43B (2), pp. 241–66.

    Article  Google Scholar 

  11. [11] X.M. Yang, J.Y. Li, M. Zhang, and J. Zhang: Ironmaking Steelmaking, 2016, vol. 43 (1), pp. 39–55.

    Article  CAS  Google Scholar 

  12. [12] X.M. Yang, M. Zhang, G.M. Chai, J.Y. Li, Q. Liang, and J. Zhang: Ironmaking Steelmaking, 2016, vol. 43 (9), pp. 663–87.

    Article  Google Scholar 

  13. Slag Atlas, 2nd ed., Verein Deutscher Eisenhüttenleute, eds., Verlag Stahleisen, Düsseldorf, 1995.

  14. [14] M. Hino and K. Ito: Thermodynamic Data for Steelmaking, The Japan Society for the Promotion of Science (JSPS), The 19th Committee on Steelmaking, Tohoku University Press, Sendai, 2010.

    Google Scholar 

  15. [15] J.A. Duffy and M.D. Ingram: J. Am. Ceram. Soc., 1971, vol. 93 (24), pp. 6448–54.

    CAS  Google Scholar 

  16. [16] J.A. Duffy and M.D. Ingram: J Non-Cryst Solids, 1976, vol. 21 (3), pp. 373–410.

    Article  CAS  Google Scholar 

  17. J.A. Duffy, M.D. Ingram, and I.D. Sommerville: J. Chem. Soc., Faraday Trans. 1, 1978, vol. 14, pp. 1410–19.

  18. [18] D.J. Gaskell: Trans. ISIJ, 1982, vol. 22 (12), pp. 997–1100.

    Article  CAS  Google Scholar 

  19. T. Mori: Bull. Jpn. Inst. Metals, 1984, vol. 23 (4), pp. 354–61.

  20. [20] T. Mori: Trans. Jpn. Inst. Met., 1984, vol. 25 (11), pp. 761–71.

    Article  CAS  Google Scholar 

  21. [21] D.J. Sosinsky and I.D. Sommerville: Metall. Trans. B, 1986, vol. 17B (2), pp. 331–37.

    Article  CAS  Google Scholar 

  22. [22] Å. Bergman: Steel Res., 1989, vol. 60 (9), pp.383–86.

    Article  CAS  Google Scholar 

  23. [23] D.R. Gaskell: Metall. Trans. B, 1989, vol. 20B (1), pp. 113–18.

    Article  CAS  Google Scholar 

  24. [24] R.W. Young, J.A. Duffy, G.J. Hassall, and Z. Xu: Ironmaking Steelmaking, 1992, vol. 19 (3), pp. 201–19.

    CAS  Google Scholar 

  25. [25] X.M. Yang, T.Z. Liu, Z.C. Guo, X.P. Yu, and D.G. Wang: Eng. Chem. Metall. 1995, vol. 16 (3), pp. 194–204.

    CAS  Google Scholar 

  26. [26] M.A. T. Andersson, P.G. Jönsson, and M.M. Nzotta: ISIJ Int., 1999, vol. 39 (11), pp. 1140–49.

    Article  CAS  Google Scholar 

  27. [27] A. Shankar: Ironmaking Steelmaking, 2006, vol. 33 (5), pp. 413–18.

    Article  CAS  Google Scholar 

  28. [28] A. Shankar, M. Görnerup, A.K. Lahari, and S. Seetharaman: Metall Mater Trans B, 2006, vol. 37B (6), pp. 941–47.

    Article  CAS  Google Scholar 

  29. [29] L.J. Wang, M. Hayashi, K.C. Chou, and S. Seetharaman: Metall. Mater. Trans. B, 2012, vol. 43B (6), pp. 1338–43.

    Article  Google Scholar 

  30. [30] Y. Taniguchi, L.J. Wang, N. Sano, and S. Seetharaman: Metall. Mater. Trans. B, 2012, vol. 43B (3), pp. 477–84.

    Article  Google Scholar 

  31. [31] G.H. Zhang, K.C. Chou, and U. Pal: ISIJ Int., 2013, vol. 53 (5), pp. 761–67.

    Article  CAS  Google Scholar 

  32. [32] J. Zhang, X.W. Lv, Z.M. Yan, Y.L. Qin, and C.G. Bai: Ironmaking Steelmaking, 2016, vol. 43 (5), pp. 378–84.

    Article  CAS  Google Scholar 

  33. [33] X. Hao and X.H. Wang: Steel Res. Int., 2016, vol. 87 (3), pp. 359–63.

    Article  CAS  Google Scholar 

  34. T. Talapaneni, N. Yedla, and S. Sarkar: Metall. Res. Technol., 2018, vol. 115 (5), Article Number: 502, pp. 1–8.

  35. [35] P.T. Carter and T.G. MacFarlane: J. Iron Steel Inst., 1957, vol. 185, pp. 54–66

    Google Scholar 

  36. [36] R.A. Sharma and F. Richardson: J. Iron Steel Inst., 1962, vol. 200, pp. 373–79.

    CAS  Google Scholar 

  37. [37] M. Hayashi, N. Sano, and P. Fredriksson: ISIJ Int., 2004, vol. 44 (11), pp. 1783–86.

    Article  CAS  Google Scholar 

  38. [38] S. Ban-ya and M. Hino: ISIJ Int., 2005, vol. 45 (11), pp. 1754–56.

    Article  CAS  Google Scholar 

  39. M. Hayashi, N. Sano, and P. Fredriksson: ISIJ Int., 2005, vol. 45 (11), pp. 1757.

  40. M. Temkin: Acta Physicochimica U.R.S.S., 1945, vol. 20, pp. 411–20.

  41. A.M. Samarin, M. Temkin, and L.A. Shvartsman: Acta Physicochimica U.R.S.S., 1945, vol. 20, pp. 421–40.

  42. [42] J. Chipman and L.C. Chang: JOM, 1949, vol. 1 (2), pp. 191–97.

    Article  CAS  Google Scholar 

  43. P. Herasymenko and G.E. Speight: J. Iron Steel Ins.,1950, vol. 166 (1), pp. 169–83.

  44. P. Herasymenko and G. E.Speight: J. Iron Steel Ins., 1950, vol. 166 (4), pp. 289–303.

  45. W.E. Dennis: J. Iron Steel Ins., 1950, vol. 168 (4), pp. 376.

  46. P. Herasymenko and G.E. Speight: J. Iron Steel Ins., 1950, vol. 168 (4), pp. 376.

  47. H. Flood and K. Grjotheim: J. Iron Steel Ins., 1952, vol. 171 (1), pp. 64–70.

  48. [48] K. Grjotheim: JOM, 1952, vol. 4 (11), pp. 1172–74.

    Google Scholar 

  49. [49] K. Grjotheim: J. Iron Steel Ins., 1954, vol. 178, pp. 354–56.

    CAS  Google Scholar 

  50. H. Flood and J.M. Toguri: Trans. Metall. Soc, AIME, 1963, vol. 227 (2), pp. 525–29.

  51. [51] P. Fellner and C. Krohn: Can. Metall. Quart., 1969, vol. 8 (1), pp. 275–77.

    Article  CAS  Google Scholar 

  52. [52] J.F. Elliott, D.C. Lynch, and T.B. Braun: Metall. Trans. B, 1975, vol. 6B (4), pp. 495–501.

    Article  CAS  Google Scholar 

  53. [53] T. Fϕrland and K. Grjotheim: Metall. Trans. B, 1977, vol. 8B (4), pp. 645–50.

    Article  Google Scholar 

  54. [54] K. Grjotheim and M.K. Brun: Can. Metall. Quart., 1977, vol. 16 (1), pp. 161–65.

    Article  CAS  Google Scholar 

  55. [55] M. Blander: Metall. Trans. B, 1977, vol. 8B (4), pp. 529–30.

    Article  CAS  Google Scholar 

  56. [56] E.A. Guggenheim: J. Phys. Chem., 1928, vol. 33 (6), pp 842–49.

    Article  Google Scholar 

  57. [57] D.C. Ma and W.K. Lu: Met Trans B, 1993, vol. 24B (2), pp. 317–23.

    Article  CAS  Google Scholar 

  58. [59] J. Chipman: Discuss. Faraday Soc., 1948, vol. 4, pp. 23–49.

    Article  Google Scholar 

  59. [60] F.D. Richardson: Discuss. Faraday Soc., 1948, vol. 4, pp. 244–57.

    Article  Google Scholar 

  60. [61] G. Hatch and J. Chipman: JOM, 1949, vol. 1(4), pp. 274–84.

    Article  CAS  Google Scholar 

  61. [62] J. Zhang: Computational thermodynamics of metallurgical melts and solutions, Metallurgical Industry Press, Beijing, China, 2007.

    Google Scholar 

  62. [63] X.M. Yang, J.S. Jiao, R.C. Ding, C.B. Shi, and H.J. Guo: ISIJ Int., 2009, vol. 49 (11), pp. 1828–37.

    Article  CAS  Google Scholar 

  63. [64] X.M. Yang, J.P. Duan, C.B. Shi, M. Zhang, Y.L Zhang, and J.C. Wang: Metall. Mater. Trans. B, 2011, vol. 42B (4), pp. 738–70.

    Article  Google Scholar 

  64. [65] X.M. Yang, C.B. Shi, M. Zhang, J.P. Duan, and J. Zhang: Metall. Mater. Trans. B, 2011, vol. 42B (5), pp. 951–77.

    Article  Google Scholar 

  65. [66] X.M. Yang, C.B. Shi, M. Zhang, G.M. Chai, and F. Wang:. Metall. Mater. Trans. B, 2011, vol. 42B (6), pp. 1150–80.

    Article  Google Scholar 

  66. [67] X.M. Yang, M. Zhang, P.C. Li, J.Y. Li, J.L. Zhang, and J. Zhang: Metall. Mater. Trans. B, 2012, vol. 43B (6), pp. 1358–87.

    Article  Google Scholar 

  67. [68] X.M. Yang, J.Y. Li, P.C. Li, M. Zhang, and J. Zhang: Steel Res. Int., 2014, vol. 85 (2), pp. 164–206.

    Article  CAS  Google Scholar 

  68. [69] X.M. Yang, M. Zhang, J.L. Zhang, P.C. Li, J.Y. Li, and J. Zhang: Steel Res. Int., 2014, vol. 85(3), pp. 347–75.

    Article  CAS  Google Scholar 

  69. [70] X.M. Yang, J.Y. Li, M. Zhang, G.M. Chai, and J. Zhang: Metall. Mater. Trans. B, 2014, vol. 45B (6), pp. 2118–37.

    Article  Google Scholar 

  70. [71] X.M. Yang, J.Y. Li, M.F. Wei, and J. Zhang: Metall. Mater. Trans. B, 2016, vol. 47B (1), pp. 174–206.

    Article  Google Scholar 

  71. [72] X.M. Yang, J.Y. Li, G.M. Chai, D.P. Duan, and J. Zhang: Metall. Mater. Trans. B, 2016, vol. 47B (4), pp. 2302–29.

    Article  Google Scholar 

  72. [73] X.M. Yang, J.Y. Li, G.M. Chai, D.P. Duan, and J. Zhang: Metall. Mater. Trans. B, 2016, vol. 47B (4), pp. 2330–46.

    Article  Google Scholar 

  73. [74] X.M. Yang, J.Y. Li, G.M. Chai, D.P. Duan, and J. Zhang: Ironmaking Steelmaking, 2017, vol. 44 (6), pp. 437–54.

    Article  CAS  Google Scholar 

  74. [75] X.M. Yang, J.Y. Li, M. Zhang, G.M. Chai, D.P. Duan, and J. Zhang: Ironmaking Steelmaking, 2018, vol. 45 (1), pp. 25–43.

    Article  CAS  Google Scholar 

  75. X.M. Yang, J.Y. Li, M. Zhang, F.J. Yan, D.P. Duan, and J. Zhang: Metals, 2018, vol. 8 (12), Article Number: 1083, pp. 1–27.

  76. [78] F. Sommer: Z. Metallkd., 1982, vol. 73 (2), pp. 72–76.

    CAS  Google Scholar 

  77. [79] F. Sommer: Z. Metallkd., 1982, vol. 73 (2), pp. 77–86.

    CAS  Google Scholar 

  78. K. Wasai and K. Mukai: J. Jpn. Inst. Metals, 1981, vol. 45 (6), pp. 593–602.

  79. K. Wasai and K. Mukai: J. Jpn. Inst. Metals, 1982, vol. 46 (3), pp. 266–74.

  80. [82] J.H. Hildebrand and E.D. Eastman: J. Am. Chem.Soc., 1915, vol. 37 (11), pp. 2452–59.

    Article  CAS  Google Scholar 

  81. [83] A.S. Jordan: Metall. Trans., 1970, vol. 1 (1), pp. 239–49.

    Article  CAS  Google Scholar 

  82. [84] Z. Moser, E. Kawecka, F. Sommer, and B. Predel: Metall. Trans. B, 1982, vol. 13B (1), pp. 71–76.

    CAS  Google Scholar 

  83. [85] C. A. Eckert, J. S. Smith, R. B. Irwin, and K. R. Cox: A chemical theory for the thermodynamics of highly-solvated liquid metal mixtures. AIChE J., 1982, vol. 28(2), pp. 325–333.

    Article  CAS  Google Scholar 

  84. [86] C.A. Eckert, R.B. Irwin, and J.S. Smith: Metall. Trans. B, 1983, vol. 14B (3), pp. 451–58.

    Article  CAS  Google Scholar 

  85. [87] S. Wasiur-Rahman and M. Medraj: Intermetallics, 2009, vol. 17 (10), pp. 847–64.

    Article  CAS  Google Scholar 

  86. [88] A.D Pelton and Y.B. Kang: Int. J. Mater. Res., 2007, vol. 98 (10), pp. 907–17.

    Article  CAS  Google Scholar 

  87. [89] X.M. Yang, M. Zhang, P.C. Li, J.Y. Li, and J. Zhang: Steel Res. Int., 2013, vol. 84 (8), pp. 784–811.

    Article  CAS  Google Scholar 

  88. X.M. Yang, J.Y. Li, D.P. Duan, F.J. Yan, and J. Zhang: J. Iron Steel Res. Int., 2018, vol. 25 (1), pp. 37–56.

  89. X.M. Yang, J.Y. Li, F.J. Yan, D.P. Duan, and J. Zhang: J. Iron Steel Res. Int., 2018, vol. 25 (2), pp. 181–99.

  90. [92] X.M. Yang, J.Y. Li, F.J. Yan, D.P. Duan, and J. Zhang: High Temp. Mater. Proc., 2018, vol. 37 (9-10), pp. 815–48.

    Article  CAS  Google Scholar 

  91. W.F. Holbrook and T.L. Joseph: Trans. Metall. Soc, AIME, 1936, vol. 120, pp.99–117.

  92. W.F. Holbrook: Trans. Metall. Soc, AIME, 1938, vol. 131, pp. 127–44.

  93. [95] H. Momokawa and N. Sano: Metall. Trans. B, 1982, vol. 13B (4), pp. 643–44.

    Article  CAS  Google Scholar 

  94. [96] S. Tabuchi and N. Sano: Metall. Trans. B, 1984, vol. 15B (2), pp. 351–56.

    Article  CAS  Google Scholar 

  95. [97] A. Bergman and A. Gstafsson: Steel Res., 1988, vol. 59 (7), pp. 281–88.

    Article  CAS  Google Scholar 

  96. R. Selin: The role of phosphorus, vanadium and slag forming oxides in direct reduction based steelmaking. Dr. Dissertation to Dept. of Production Tech., Mining and Steel Ind., Royal Inst. Tech., Stockholm, 1987, TRITAPT-87-04.

  97. [99] R. Selin: Scand. J. Metall., 1991, vol. 20 (5), pp. 279–99.

    CAS  Google Scholar 

  98. [100] E. Schürmann and H. Fischer: Steel Res., 1991, vol. 62 (8), pp. 338–45.

    Article  Google Scholar 

  99. [101] R. Inoue and H. Suito: ISIJ Int., 2006, vol. 46 (2), pp. 174–79.

    Article  CAS  Google Scholar 

  100. [103] S. Basu, A.K. Lahiri, and S. Seetharaman: Metall. Mater. Trans. B, 2010, vol. 41B (2), pp. 414–19.

    Article  CAS  Google Scholar 

  101. [104] G.K. Sigworth and J.F. Elliott: Met. Sci., 1984, vol. 8 (1), pp. 298–310.

    Article  Google Scholar 

  102. V. Ya. Dashevskii and N.P. Lyakishev: Doklady Chemistry, 2006, vol. 408 (1), pp. 83–86.

  103. V. Ya. Dashevski: Russian Metallurgy, 2009, vol. 2009, Article Number: 1, pp. 1–8.

  104. V. Ya. Dashevskiy, A.A. Aleksandrov, A.G. Kanevskiy, and L.I. Leont’ev: ISIJ Int., 2013, vol. 53 (7), pp. 1120–24.

  105. [108] A.A. Aleksandrov and V.Ya. Dashevskii: Russian Metallurgy, 2014, vol. 2014 (3), pp. 185–90.

    Article  Google Scholar 

  106. [109] A.A. Aleksandrov and, V.Ya. Dashevskii: Steel in Translation. 2014, vol. 44 (11), pp 813–18.

    Article  Google Scholar 

  107. [110] A.A. Aleksandrov, V. Dashevskii and L. Leont’ev: Doklady Physical Chemistry, 2015, vol. 462 (2), pp. 131–34.

    Article  CAS  Google Scholar 

  108. [111] X.M. Yang, J.Y. Li, G.M. Chai, D.P. Duan, and J. Zhang: Metall. Mater. Trans. B, 2016, vol. 47B (4), pp. 2279–301.

    Article  Google Scholar 

  109. [112] H.B. Bell: Can. Metall. Quart., 1981, vol. 20 (2), pp. 169–79.

    Article  CAS  Google Scholar 

  110. [113] P.B. Drain, B.J. Monaghan, R.J. Longbottom, M.W. Chapman, G.Q. Zhang and S.J. Chew: ISIJ Int., 2018, vol. 58 (11), pp. 1965–71.

    Article  CAS  Google Scholar 

  111. [114] F.S. Li, X.P. Li, Y.L. Zhang, and M. Gao: High Temp. Mater. Proc., 2019, vol. 38 (2019), pp. 50–59.

    Article  CAS  Google Scholar 

  112. [115] G. N. Lewis: Valence and the structure of atoms and molecules. The Chemical Catalogue Company, New York. 1923.

    Google Scholar 

  113. [116] G.N. Lewis: Trans. Faraday Soc., 1923, vol. 19, pp. 452–58.

    Article  CAS  Google Scholar 

  114. G.N. Lewis: J. Franklin Inst., 1938 vol. 226 (3), pp. 293–313.

  115. [118] K.H. Sun and A. Silverman: J. Am. Ceram. Soc., 1945, vol. 28 (1), pp. 8–11.

    Article  CAS  Google Scholar 

  116. [58] P.T. Carter: Discuss. Faraday Soc., 1948, vol. 4, pp. 307–16.

    Article  Google Scholar 

  117. N.J. Grant and J. Chipman: Trans. Metall. Soc, AIME, 1946, vol. 167 (1), pp. 134–54.

  118. T. Nakamura, Y. Ueda, and J.M. Toguri: Proceedings of the Third International Conference on Metallurgical Slags and Fluxes, University of Strathclyde, 27–29 June 1988, The Institute of Metals, London, pp. 146–49.

  119. [121] T. Nakamura, T. Yokoyama and J.M. Toguri: ISIJ Int., 1993, vol. 33 (1), pp. 204–209.

    Article  CAS  Google Scholar 

  120. [122] K.C. Mills and S. Sridhar: Ironmaking Steelmaking, 1999, vol. 26 (4), pp. 262–68.

    Article  CAS  Google Scholar 

  121. [123] A. Bronson and G.R.St. Pierre: Metall. Trans. B, 1981, vol. 12B (4), pp. 729–31.

    Article  CAS  Google Scholar 

  122. [124] R.G. Reddy and M. Blander: Metall. Trans. B, 1987, vol. 18B (3), pp. 591–96.

    Article  CAS  Google Scholar 

  123. [125] R.G. Reddy and M. Blander: Metall. Trans. B, 1989, vol. 20B (2), pp. 137–40.

    Article  CAS  Google Scholar 

  124. [126] A.D. Pelton, G. Eriksson, and A. Romero-Serrano: Metall. Trans. B, 1993, vol. 24B (5), pp. 817–25.

    Article  CAS  Google Scholar 

  125. [127] S. Ban-ya, M. Hobo, T. Kaji, T. Itoh, and M. Hino: ISIJ Int., 2004, vol. 44 (11), pp. 1810–16.

    Article  CAS  Google Scholar 

  126. [128] S. Ban-ya: Bull. Jpn. Inst. Met., 1987, vol. 26 (7), pp. 656–60.

    Article  CAS  Google Scholar 

  127. [129] Y.B. Kang and A.D. Pelton: Metall. Mater. Trans. B, 2009, vol. 40B (6), pp. 979–94.

    Article  CAS  Google Scholar 

  128. [130] Y.B. Kang and J.H. Park: Metall. Mater. Trans. B, 2011, vol. 42B (6), pp. 1211–17.

    Article  Google Scholar 

  129. [131] G.H. Park, Y.B. Kang, and J.H. Park: ISIJ Int., 2012, vol. 52 (5), pp. 764–69.

    Article  CAS  Google Scholar 

  130. [132] M.M. Nzotta, M. Andreasson, P. Jönsson, and S. Seetharaman: Scand. J. Metall., 2000, vol. 29 (4), pp. 177–84.

    Article  CAS  Google Scholar 

  131. [133] A.D. Pelton and Y.B. Kang: Metall. Mater. Trans. B, 2016, vol. 47B (6), pp. 3241–43.

    Article  Google Scholar 

  132. [134] I.H. Jung and E. Moosavi-Khoonsari: Metall. Mater. Trans. B, 2016, vol. 47 (2), pp. 819–23.

    Article  CAS  Google Scholar 

  133. [135] C. Allertz, M. Selleby and D. Sichen: Metall. Mater. Trans. B, 2016, vol. 47B (5), pp. 3039–45.

    Article  Google Scholar 

  134. [136] I.H. Jung: Calphad, 2010, vol. 34 (3), pp. 332–62.

    Article  CAS  Google Scholar 

  135. [142] D. Sichen, R. Nilsson, and S. Seetharaman: Steel Res., 1995, vol. 66 (11), pp. 458–62.

    Article  CAS  Google Scholar 

  136. [143] M.M. Nzotta, D. Sichen, and S. Seetharaman: ISIJ Int., 1998, vol. 38 (11), pp. 1170–79.

    Article  CAS  Google Scholar 

  137. [144] M.M. Nzotta, D. Sichen, and S. Seetharaman: ISIJ Int., 1999, vol. 39 (7), pp. 657–63.

    Article  CAS  Google Scholar 

  138. [145] M.M. Nzotta, D. Sichen, and S. Seetharaman: Metall. Mater. Trans. B, 1999, vol.30B (5), pp. 909–20.

    Article  CAS  Google Scholar 

  139. [147] P.B. Drain, B.J. Monaghan, G.Q. Zhang, R.J. Longbottom, M.W. Chapman, and S.J. Chew: Ironmaking Steelmaking, 2017, vol. 44 (10), pp. 721–31.

    Article  CAS  Google Scholar 

  140. S. Ban-ya, M. Hino, A. Sato, and O. Terayama: Tetsu–to–Hagané, 1991, vol.77 (3), pp. 361–68.

  141. K. Balajiva, A.G. Quarrell and P. Varjagupta: J. Iron Steel Inst., 1947, vol. 155 (1), pp. 563–67.

  142. [102] E.T. Turkdogan: Physical Chemistry of High Temperature Technology, Academic Press, New York, 1980.

    Google Scholar 

  143. H. Suito and R. Inoue:. Tetsu–to–Hagané, 1983, vol.69 (2), pp. A25–A28.

  144. K. Narita, T. Makino, H. Matsumoto, A. Hikosaka, T. Oonishi, and H. Takagi: Tetsu–to–Hagané, 1983, vol.69 (15), pp. 1825–31.

  145. [139] T. Tsao and H.G. Katayama: Trans. ISIJ., 1986, vol.26 (8), pp. 717–23.

    Article  Google Scholar 

  146. R. Nagabayashi, M. Hino, and S. Ban-ya: Tetsu–to–Hagané, 1990, vol.76 (2), pp. 183–90.

  147. [146] Y. Taniguchi, N. Sano, and S. Seetharaman: ISIJ Int. 2009, vol. 49 (2), pp. 156–63.

    Article  CAS  Google Scholar 

  148. K. Balajiva, A.G. Quarrell and P. Varjagupta: J. Iron Steel Inst., 1946, vol. 153 (1), pp. 115–50.

  149. [151] H. Suito, R. Inoue, and M. Takada: Trans. ISIJ, 1981, vol. 21 (4), pp. 250–59.

    Article  CAS  Google Scholar 

  150. G.W. Healy: J. Iron Steel Inst., 1970, vol. 207 (7), pp. 664–68.

  151. [152] H. Suito and R. Inoue: Trans. ISIJ, 1982, vol. 22 (11), pp. 869–77.

    Article  Google Scholar 

  152. [154] Y. Kawai, H. Nakamura, K. Kawakami, T. Toyoda, A. Ishizaka, and T. Ebisawa: Tetsu-to-Hagané, 1983, vol. 69 (15), pp. 1755–62.

    Article  CAS  Google Scholar 

  153. X.F. Zhang, I.D. Sommerville, and J.M. Toguri: JOM, 1983, vol.35 (12), pp. 93.

  154. [156] H. Suito and R. Inoue: Trans. ISIJ, 1984, vol. 24 (1), pp. 40–46.

    Article  CAS  Google Scholar 

  155. [157] T. Ting, H. G. Katayama, and A. Tanaka: Tetsu-to-Hagané, 1986, vol. 77 (2), pp. 225–32.

    Article  Google Scholar 

  156. [158] K. Kunisada and H. Iwai: Trans ISIJ, 1987, vol. 27 (4), pp.263–69.

    Article  CAS  Google Scholar 

  157. [159] T. Usui, K. Yamada, Y. Kawal, S. Inoue, H. Hiroaki, and Y. Nimura: Tetsu-to-Hagané, 1991,vol. 77 (10), pp. 1641–48.

    Article  CAS  Google Scholar 

  158. [161] H. Suito and R. Inoue: ISIJ Int., 1995, vol. 35 (3), pp. 258–65.

    Article  CAS  Google Scholar 

  159. [162] E. T. Turkdogan: Fundamentals of Steelmaking. Institute of Materials, London, 1996, pp. 186–189.

    Google Scholar 

  160. [163] K. Ide and R.J. Fruehan: Iron Steelmaker, 2000, vol. 27(12), pp. 65–70.

    CAS  Google Scholar 

  161. [164] R.J. Fruehan: Iron Steelmaker, 2000, vol. 30 (2), pp. 48–60.

    Google Scholar 

  162. [165] C.M. Lee and R.J. Fruehan: Ironmaking Steelmaking, 2005, vol. 32 (6), pp. 503–508.

    Article  CAS  Google Scholar 

  163. R. Inoue, H. Suito, and M. Ohtani: Bull. Res. Inst. Miner. Dressing Metall., Tohoku Univ., 1985, vol. 40 (2), pp. 199–220.

  164. [168] R. Selin, Y. Dong, and Q. Wu: Scand. J. Metall., 1990, vol. 19 (3): pp. 98–109.

    CAS  Google Scholar 

  165. [169] P.B. Drain, B.J. Monaghan, R.J. Longbottom, M.W. Chapman, G. Q. Zhang, and S.J. Chew: ISIJ Int., 2019, vol. 59 (5), pp. 829–47.

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the Beijing Natural Science Foundation (Grant No. 2182069). The authors wish to express their sincere gratitude to the anonymous peer reviewers for valuable and insightful suggestions, which were adopted in the revised version.

Conflict of Interest

The authors declare no competing financial interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xue-Min Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted August 8, 2020; accepted November 23, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, XM., Li, JY., Zhang, M. et al. A Critical Review of Limitations of Slag Capacity Concepts in Metallurgical Applications by Taking Sulfide and Phosphate Capacities as Examples. Metall Mater Trans B 52, 714–742 (2021). https://doi.org/10.1007/s11663-020-02045-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-020-02045-x

Navigation