Skip to main content
Log in

A Thermodynamic Model for Representation Reaction Abilities of Structural Units in Fe-S Binary Melts Based on the Atom-Molecule Coexistence Theory

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

A thermodynamic model for calculating the mass action concentrations of structural units in Fe-S binary melts based on the atom-molecule coexistence theory, i.e., AMCT-N i model, has been developed and verified through a comparison with the reported activities of both S and Fe in Fe-S binary melts with changing mole fraction \( x_{\text{S}} \) of S from 0.0 to 0.095 at temperatures of 1773 K, 1823 K, and 1873 K (1500 °C, 1550 °C, and 1600 °C) from the literature. The calculated mass action concentration \( N_{\text{S}} \) of S is much smaller than the reported activity \( a_{\text{R, S}} \) of S in Fe-S binary melts with changing mole fraction \( x_{\text{S}} \) of S from 0.0 to 0.095. The calculated mass action concentration \( N_{\text{S}} \) of S can correlate the reliable 1:1 corresponding relationship with the reported activity \( a_{\text{R, S}} \) or \( a_{\%,\text {S}} \) of S through the introduced transformation coefficients with absolutely mathematical meaning or through the defined comprehensive mass action concentration of total S with explicitly physicochemical meaning. The calculated mass action concentrations \( N_{i} \) of structural units from the developed AMCT-N i thermodynamic model can be applied to describe or predict the reaction abilities of structural units in Fe-S binary melts. The reaction abilities of Fe and S show a competitive relationship each other in Fe-S binary melts in a temperature range from 1773 K to 1873 K (1500 °C to 1600 °C). The calculated mass action concentration \( N_{{{\text{FeS}}_{ 2} }} \) of FeSis very small and can be ignored because FeScan be incongruently decomposed above 1016 K (743 °C). The very small values for the calculated mass action concentrations \( N_{{{\text{FeS}}_{ 2} }} \) of FeSin a range of mole fraction \( x_{\text{S}} \) of S from 0.0 to 1.0 as well as a maximum value for the calculated mass action concentration \( N_{\text{FeS}} \) of FeS with mole fraction \( x_{\text{S}} \) of S as 0.5 are coincident with diagram phase of Fe-S binary melts. A spindle-type relationship between the calculated mass action concentration \( N_{i} \) and the calculated equilibrium mole number \( n_{i} \) can be found for FeS and FeSin Fe-S binary melts. The Raoultian activity coefficient \( \gamma_{S}^{0} \) of S relative to pure liquid S(l) as standard state and the infinitely dilute solution as reference state in Fe-S binary melts can be determined as 1.0045 in a temperature range from 1773 K to 1873 K (1500 °C to 1600 °C). The standard molar Gibbs free energy change \( \Updelta_{\text{sol}} G_{{{\text{m, S }}({\text{l}}) \to [{\text{S}}]_{{ \, [{\text{pct \, S}}] = 1.0}} }}^{{\Uptheta,\%}} \) of dissolving liquid S for forming [pct S] as 1.0 in Fe-S binary melts relative to 1 mass percentage of S as standard state can be formulated as \( \Updelta_{\text{sol}} G_{{{\text{m, S }}({\text{l}}) \to [{\text{S}}]_{{ \, [{\text{pct \, S] }} = \, 1.0}} }}^{{\Uptheta,\, \%}} \,\, = -0.219\,-\,33.70T\,\,\left( {\text{J/mol}} \right).\)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Abbreviations

\( a_{i} \) :

Activity of element i or compound i (–)

\( a_{{{\text{R, }}i}} \) :

Activity of element i or compound i relative to pure liquid i as standard state with mole fraction \( x_{i} \) as concentration unit and following the Raoult’s law, i.e., \( a_{{{\text{R, }}i}} \, = x_{i} \, \gamma_{i}\)

\( a_{{\%,i}} \) :

Activity of element i referred to 1 mass percentage of element i as standard state with mass percentage \( [{\text{pct}} \, i] \) as concentration unit and obeying the Henry’s law under the condition of taking the infinitely dilute ideal solution as reference state, i.e., \( a_{\%,i}\,=\,[{\text{pct}} \,i]\, f_{\%, i} \)

\( b_{i} \) :

Mole number of element i in 100-g metallic melts, having the same meaning of \( n_{i}^{0} \) (mol)

\( f_{\%,i}\) :

Activity coefficient of element i in metallic melts related with activity \( a_{\%,i}\) (–)

\( \Updelta_{\text{fus}} G_{{\text {m}}, i({\text {s}})}^{\Uptheta} \) :

Standard molar Gibbs free energy change of fusing or melting element i or compound i without standard state (J/mol)

\( \Updelta_{\text{r}} G_{{\text{m}}, i}^{{\Uptheta ,{\text{ R}}}} \) :

Standard molar Gibbs free energy change of reaction for forming compound i based on activity \( a_{{{\text{R, }}i}} \) relative to pure liquid element i or compound i as standard state and following the Raoult’s law for reactants and products (J/mol)

\( \Updelta_{\text{r}} G_{{\text{m}}, i}^{{\Uptheta ,\%}} \) :

Standard molar Gibbs free energy change of reaction for forming compound i based on activity \( a_{\%,i} \) referred to 1 mass percentage of element i as standard state and obeying the Henry’s law for reactants and products (J/mol)

\( \Updelta_{\text{sol}} G_{{{\text{m}}, \, i \, ({\text{l}}) \to [i]}}^{{\Uptheta ,\%}} \) :

Standard molar Gibbs free energy change of dissolving liquid element i or compound i into metallic melts based on activity \( a_{\%,i} \) referred to 1 mass percentage of element i as standard state and obeying the Henry’s law (J/mol)

\( \Updelta_{\text {r}} G_{{{\text{m}}, \, i \, ({\text{l}})}}^{{\Uptheta ,{\text{ R}}({\text{l}})}} \) :

Standard molar Gibbs free energy change of reaction for forming liquid compound i from reactants in liquid based on pure matters as standard states for reactants and products (J/mol)

\( \Updelta_{\text {r}} G_{{{\text{m}}, \, i \, ({\text{l}})}}^{{\Uptheta ,{\text{ R(s)}}}} \) :

Standard molar Gibbs free energy change of reaction for forming liquid compound i from reactants in solid based on pure matters as standard states for reactants and products (J/mol)

\( \Updelta_{\text {r}} G_{{{\text{m}}, \, i \, ({\text{s}})}}^{{\Uptheta ,{\text{ R}}({\text{l}})}} \) :

Standard molar Gibbs free energy change of reaction for forming solid compound i from reactants in liquid based on pure matters as standard states for reactants and products (J/mol)

\( \Updelta_{\text {r}} G_{{{\text{m}}, \, i \, ({\text{s}})}}^{{\Uptheta ,{\text{ R(s)}}}} \) :

Standard molar Gibbs free energy change of reaction for forming solid compound i from reactants in solid based on pure matters as standard states for reactants and products (J/mol)

\( \Updelta_{\text{sol}} G_{{{\text{m}}, \, i \, ({\text{l}}) \to [i]}}^{{\Uptheta ,{\text{ R(l}})}} \) :

Standard molar Gibbs free energy change of dissolving liquid element i or compound i into metallic melts based on activity \( a_{{{\text{R, }}i}} \) relative to pure liquid element i or compound i as standard state and following the Raoult’s law (J/mol)

\( \Updelta_{\text{sol}} G_{{{\text{m}}, \, i \, ({\text{l}}) \to [i]}}^{{\Uptheta ,{\text{ R(s}})}} \) :

Standard molar Gibbs free energy change of dissolving liquid element i or compound i into metallic melts based on activity \( a_{{{\text{R, }}i}} \) relative to pure solid element i or compound i as standard state and following the Raoult’s law (J/mol)

\( \Updelta_{\text{sol}} G_{{{\text{m}}, \, i \, ({\text{s}}) \to [i]}}^{{\Uptheta ,{\text{ R(l}})}} \) :

Standard molar Gibbs free energy change of dissolving solid element i or compound i into metallic melts based on activity \( a_{{{\text{R, }}i}} \) relative to pure liquid element i or compound i as standard state and following the Raoult’s law (J/mol)

\( \Updelta_{\text{sol}} G_{{{\text{m}}, \, i \, ({\text{s}}) \to [i]}}^{{\Uptheta ,{\text{ R(s}})}} \) :

Standard molar Gibbs free energy change of dissolving solid element i or compound i into metallic melts based on activity \( a_{{{\text{R, }}i}} \) relative to pure solid element i or compound i as standard state and following the Raoult’s law (J/mol)

\( \Updelta_{\text{fus}} H_{{{\text{m}}, \, i \, ({\text{s}})}}^{\Uptheta } \) :

Standard molar enthalpy change of fusing or melting solid element i or compound i (J/mol)

\( K_{i}^{{\Uptheta ,{\text{ R}}}} \) :

Standard equilibrium constant of chemical reaction for forming compound i based on activity \( a_{{{\text{R, }}i}} \) relative to pure liquid or solid as standard state with mole fraction \( x_{i}^{{}} \) as concentration unit and following the Raoult’s law (–)

\( K_{i}^{{\Uptheta ,\%}} \) :

Standard equilibrium constant of chemical reaction for forming component i or compound i based on activity \( a_{\%,i} \) referred to 1 mass percentage of element i as standard state with mass percentage \( [{\text{pct}} \, i] \) as concentration unit and obeying the Henry’s law (–)

\( L_{{i, \, a_{{{\text{R}}, \, i}} \to N_{i} }}^{'} \) :

Transformation coefficient between \( a_{{{\text{R, }}i}} \) and \( N_{i}^{{}} \), defined as \( L_{{i, \, a_{{{\text{R}}, \, i}} \to N_{i} }}^{'} = a_{{{\text{R}}, \, i}} /N_{i} \,( - ) \)

\( L_{{i, \, a_{\%,i} \to N_{i} }}^{''} \) :

Transformation coefficient between \( a_{\%,i} \) and \( N_{i}^{{}} \), defined as \( L_{{i, \, a_{\%,i} \to N_{i} }}^{''} = a_{\%,i} /N_{i} \,( - ) \)

\( \overline{{L^{'} }}_{{i \, , \, a_{{{\text{R}}, \, i}} \to N_{i} }} \) :

Average value of transformation coefficient \( \overline{{L^{'} }}_{{i \, , \, a_{{{\text{R}}, \, i}} \to N_{i} }} \) at a fixed temperature (–)

\( \overline{{L^{''} }}_{{i \, , \, a_{\%,i} \to N_{i} }} \) :

Average value of transformation coefficient \( L_{{i, \,a_{\%,i} \to N_{i} }}^{''} \) at a fixed temperature (–)

\( n_{i}^{0} \) :

Mole number of element i in a 100-g metallic melts before reaction equilibrium, having the same meaning of \( b_{i} \) (mol)

\( n_{i} \) :

Equilibrium mole number of structural unit i in 100-g metallic melts based on the AMCT (mol)

\( \sum n_{i} \) :

Total equilibrium mole number of all structural units in 100-g metallic melts based on the AMCT (mol)

\( N_{i} \) :

Mass action concentrations of structural unit i in metallic melts based on the AMCT (–)

\( N_{ci} \) :

Mass action concentrations of compound ci in metallic melts based on the AMCT (–)

\( N_{i}^{'} \) :

Converted mass action concentration of structural unit i from \( \overline{{L^{'} }}_{{i \, , \, a_{{{\text{R}}, \, i}} \to N_{i} }} \), defined as \( N_{i}^{'} = \overline{{L^{'} }}_{{i \, , \, a_{{{\text{R}}, \, i}} \to N_{i} }} N_{i}^{{}} \,( - ) \)

\( N_{i}^{''} \) :

Converted mass action concentration of structural unit i from \( \overline{{L^{''} }}_{{i \, , \, a_{\%,i} \to N_{i} }} \), defined as \( N_{i}^{''} = \overline{{L^{''} }}_{{i \, , \, a_{\%,i} \to N_{i} }} N_{i}^{{}} \,( - ) \)

\( N_{{{\text{total\,}}i}}^{'} \) :

Defined comprehensive mass action concentration of the integrated structural units containing i or of total element i (–)

\( N_{{{\text{total\,}}i}}^{''} \) :

Converted mass action concentration of the integrated structural units containing element i, similar to activity \( a_{\%,i} \) of element i referred to 1 mass percentage of element i as standard state with mass percentage \( [{\text{pct}} \, i] \) as concentration unit and obeying the Henry’s law (–)

\( p_{i} \) :

Partial pressure of component i in gaseous phase (Pa)

\( p^{\Uptheta } \) :

Standard pressure of gas at sea level and 273 K (0 °C) as 101,325 Pa (Pa)

\( R \) :

Gas constant (8.314 J/(mol·K))

\( T \) :

Absolute temperature (K)

\( T_{{{\text{f}}, \, i \, ({\text{s}})}}^{ * } \) :

Melting point of element i or compound i (K)

\( x_{i} \) :

Mole fraction of element i or compound i in metallic melts (–)

\( x_{i}^{\Uptheta } \) :

Mole fraction of element i with mass percentage of element i as 1.0, having the same meaning with \( x_{{i, \, [{\text{pct }}\,i] = 1.0}}^{{}} \,( - ) \)

\( x_{{i, \, [{\text{pct }}\,i] = 1.0}}^{{}} \) :

Mole fraction of element i with mass percentage of element i as 1.0, having the same meaning with \( x_{i}^{\Uptheta } \,( - ) \)

[pct i]:

Mass percentage of element i or compound i in metallic melts (–)

i(g):

Element i or compound i in gaseous state (–)

i(l):

Element i or compound i in liquid state (–)

i(s):

Element i or compound i in solid state (–)

\( \gamma_{i} \) :

Activity coefficient of element i or component i related with activity \( a_{{\text{R}},i} \) (–)

\( \gamma_{i}^{0} \) :

Raoultian activity coefficient \( \gamma_{i}^{0} \) of element i or compound i in infinitely dilute metallic melts related with activity \( a_{{\text{R}},i}, \) equal to value \( \gamma_{i, x_i \to 0.0} \)(–)

\( \mu_{i} \) :

Standard chemical potential of element i or compound i (J/mol)

\( \mu_{{i \, ({\text{g}})}}^{ * } \) :

Chemical potential of element i or compound i as gas (J/mol)

\( \mu_{{i \, ({\text{l}})}}^{ * } \) :

Chemical potential of element i or compound i as liquid (J/mol)

\( \mu_{{i \, ({\text{s}})}}^{ * } \) :

Chemical potential of element i or compound i as solid (J/mol)

\( \mu_{[i]}^{\Uptheta } \) :

Standard chemical potential of dissolved element i or component i (J/mol)

\( \mu_{{i \, ({\text{l}})}}^{\Uptheta} \) :

Standard chemical potential of element i or component i relative to pure liquid i as standard state (J/mol)

\( \mu_{{i \, ({\text{s}})}}^{\Uptheta} \) :

Standard chemical potential of element i or component i relative to pure solid i as standard state (J/mol)

\( \mu_{{{\text{R}}, \, i}}^{\Uptheta } \) :

Standard chemical potential of element i or compound i based on activity \( a_{{{\text{R, }}i}} \) relative to pure liquid i as standard state and following the Raoult’s law (J/mol)

\( \mu_{{\%,{i}}}^{\Uptheta } \) :

Standard chemical potential of element i or compound i based on activity \( a_{{\%, \, i}} \) referred to 1 mass percentage of element i as standard state with mass percentage \( [{\text{pct}} \, i] \) as concentration unit and obeying the Henry’s law (J/mol)

ci :

Compound i or molecule i (–)

References

  1. P. Waldner and A.D. Pelton: J. Phase Equilib., 2005, vol. 26, no. 1, pp. 23–38.

    CAS  Google Scholar 

  2. O. Kubaschewski and H. Okamoto: Phase Diagrams of Binary Iron Alloys. ASM International, Materials Park, OH, 1993, pp. 364–66.

    Google Scholar 

  3. L.F. Power and H.A. Fine: Miner. Sci. Eng., 1976, vol. 8, no. 2, pp. 106–28.

    CAS  Google Scholar 

  4. F. Grønvold and S. Stølen: J. Chem. Thermodyn., 1992, vol. 24, no. 9, pp. 913–36.

    Article  Google Scholar 

  5. H. Nakazawa and N. Morimoto: Mater. Res. Bull., 1971, vol. 6, no. 5, pp. 345–58.

    Article  CAS  Google Scholar 

  6. M. Hillert and L.-I. Staffansson: Metall. Trans. B, 1975, vol. 6B, pp. 37–41.

    CAS  Google Scholar 

  7. R.C. Sharma and Y.A. Chang: Metall. Trans. B, 1979, vol. 10B, pp. 103–08.

    Article  CAS  Google Scholar 

  8. A.F. Guillermet, M. Hillert, B. Jansson, and B. Sundman: Metall. Trans. B, 1981, vol. 12B, pp. 745–54.

    Article  Google Scholar 

  9. Y.Y. Chuang, K.C. Hsieh, and Y.A. Chang: Metall. Trans. B, 1985, vol. 16B, pp. 277–85.

    Article  CAS  Google Scholar 

  10. F. Kongoli, Y. Dessureault, and A.D. Pelton: Metall. Mater. Trans. B, 1998, vol. 29B, pp. 591–601.

    Article  CAS  Google Scholar 

  11. J. Chipman and T. Li: Trans. ASM., 1937, vol. 25, no. 1, pp. 435–63.

    CAS  Google Scholar 

  12. J. White and H. Skelly: J. Iron Steel Inst., 1947, vol. 155, pp. 201–12.

    CAS  Google Scholar 

  13. J.P. Morris and A.J. Williams: Trans. ASM., 1949, vol. 41, pp. 1425–39.

    CAS  Google Scholar 

  14. J.P. Morris and R.C. Buehl: Trans. AIME, 1950, vol. 188, pp. 317–22.

    CAS  Google Scholar 

  15. C.W. Sherman, H.I. Elvander, and J. Chipman: Trans. AIME, 1950, vol. 188, pp. 334–40.

    CAS  Google Scholar 

  16. T. Rosenqvist and B.L. Dunicz: Trans. AIME, 1952, vol. 194, pp. 604–08.

    Google Scholar 

  17. T. Rosenqvist: J. Iron Steel Inst., 1954, vol. 176, no. 1, pp. 37–57.

    CAS  Google Scholar 

  18. E.T. Turkdogan, S. Ignatowicz, and J. Pearson: J. Iron Steel Inst., 1955, vol. 180, no. 4, pp. 349–54.

    CAS  Google Scholar 

  19. J.A. Cordier and J. Chipman: Trans. AIME, 1955, vol. 202, pp. 905–07.

    Google Scholar 

  20. N.A. Gokcen: J. Metals, 1956, vol. 8, no. 12, pp. 1558–67.

    Google Scholar 

  21. A. Adachi and Z. Morita: Tetsu-to-Hagané, 1958, vol. 44, no. 6, pp. 637–42.

    Google Scholar 

  22. C.B. Alcock and L.L. Cheng: J. Iron Steel Inst., 1960 vol. 195, no. 2, pp. 169–73.

    CAS  Google Scholar 

  23. W.A. Fischer and W. Ackermann: Arch. Eisenhuttenwes, 1965, vol. 36, no. 10, pp. 695–98.

    CAS  Google Scholar 

  24. H. Schenck and H. Hinze: Arch. Eisenhuttenwes, 1965, vol. 37, no. 7, pp. 545–50.

    Google Scholar 

  25. W.A. Fischer and W. Ackermann: Arch. Eisenhuttenwes, 1966, vol. 37, no. 10, pp. 779–81.

    CAS  Google Scholar 

  26. K. Yoshida, S. Ban-ya, and T. Fuwa: Tetsu-to-Hagané, 1967, vol. 53, no. 7, pp. 783–86.

    Google Scholar 

  27. E.T. Turkdogan: Trans. TMS-AIME, 1968, vol. 242, no. 7, pp. 1665–72.

    CAS  Google Scholar 

  28. W.L. Worrell and E.T. Turkdogan: Trans. TMS-AIME, 1968, vol. 242, no. 7, pp. 1673–78.

    CAS  Google Scholar 

  29. S. Ban-ya and J. Chipman: Trans. TMS-AIME, 1968, vol. 242, no. 5, pp. 940–46.

    CAS  Google Scholar 

  30. E. Ichise, K. Kitao, and T. Mori: Tetsu-to-Hagané, 1974, vol. 60, no. 14, pp. 2119–25.

    CAS  Google Scholar 

  31. S. Ikada, S. Hayashi, and T. Uno: Tetsu-to-Hagané, 1975, vol. 61, no. 10, pp. 2321–27.

    CAS  Google Scholar 

  32. F. Ishii and T. Fuwa: Tetsu-to-Hagané, 1976, vol. 62, no. 11, p. S560.

    Google Scholar 

  33. F. Ishii and T. Fuwa: Tetsu-to-Hagané, 1981, vol. 67, no. 6, pp. 736–45.

    CAS  Google Scholar 

  34. S. Hayashi and T. Uno: Tetsu-to-Hagané, 1982, vol. 68, no. 13, pp. 1728–36.

    CAS  Google Scholar 

  35. J. Zhang: Computational Thermodynamics of Metallurgical Melts and Solutions, Metallurgical Industry Press, Beijing, China, 1998.

    Google Scholar 

  36. J. Zhang: Computational Thermodynamics of Metallurgical Melts and Solutions, Metallurgical Industry Press, Beijing, China, 2007, pp. 40–70.

    Google Scholar 

  37. X.M. Yang, J.S. Jiao, R.C. Ding, C.B. Shi, and H.J. Guo: ISIJ Int., 2009, vol. 49, no. 12, pp. 1828–37.

    Article  CAS  Google Scholar 

  38. C.B. Shi, X.M. Yang, J.S. Jiao, C. Li, and H.J. Guo: ISIJ Int., 2010, vol. 50, no. 10, pp. 1362–72.

    Article  CAS  Google Scholar 

  39. X.M. Yang, C.B. Shi, M. Zhang, G.M. Chai, and F. Wang: Metall. Mater. Trans. B, 2011, vol. 42B, pp. 1150–80.

    Article  Google Scholar 

  40. X.M. Yang, C.B. Shi, M. Zhang, G.M. Chai, and J. Zhang: Metall. Mater. Trans. B, 2012, vol. 43B, pp. 241–66.

    Article  Google Scholar 

  41. X.M. Yang, J.P. Duan, C.B. Shi, M. Zhang, Y.L Zhang, and J.C. Wang: Metall. Mater. Trans. B, 2011, vol. 42B, pp. 738–70.

    Article  Google Scholar 

  42. X.M. Yang, C.B. Shi, M. Zhang, J.P. Duan, and J. Zhang: Metall. Mater. Trans. B, 2011, vol. 42B, pp. 951–76.

    Article  Google Scholar 

  43. X.M. Yang, C.B. Shi, M. Zhang, and J. Zhang: Steel Res. Int., 2012, vol. 83, no. 3, pp. 244–58.

    Article  CAS  Google Scholar 

  44. X.M. Yang, M. Zhang, J.L. Zhang, P.C. Li, J.Y. Li, and J. Zhang: Steel Res. Int., in press.

  45. J. Zhang: J. Univ. Sci. Technol. Beijing, 2000, vol. 7, no. 2, pp. 86–91.

    CAS  Google Scholar 

  46. J. Zhang: J. Univ. Sci. Technol. Beijing, 1999, vol. 6, no. 1, pp. 11–14.

    CAS  Google Scholar 

  47. J. Zhang: J. Univ. Sci. Technol. Beijing, 1999, vol. 6, no. 3, pp. 174–77.

    CAS  Google Scholar 

  48. J. Zhang and R. Zhu: J. Univ. Sci. Technol. Beijing, 2000, vol. 7, no. 1, pp. 10–3.

    CAS  Google Scholar 

  49. S.K. Wei: Thermodynamics of Metallurgical Processes, Science Press, Beijing, China, 2010.

    Google Scholar 

  50. J.Y. Zhang: Metallurgical Physicochemistry, Metallurgical Industry Press, Beijing, China, 2004.

    Google Scholar 

  51. X.H. Huang: Principles of Ironmaking and Steelmaking, 3rd ed., Metallurgical Industry Press, Beijing, China, 2005.

    Google Scholar 

  52. T.B. Massalski: Binary Alloy Phase Diagrams, 2nd ed., ASM, Materials Park, OH, 1990.

    Google Scholar 

  53. J.F. Elliott and M. Gleiser: Thermochemistry for Steelmaking, vol. 1, Pergamon Press, London, U.K., 1960.

    Google Scholar 

  54. O. Kubaschewski, E.L.L. Evans, and B. Alcock: Metallurgical Thermochemistry, Pergamon Press, London, U.K., 1967.

    Google Scholar 

  55. M. Nagamori, T. Hatakeyama, and M. Kameda: Trans. JIM, 1970, vol. 11, no. 3, pp. 190–94.

    Google Scholar 

  56. T. Rosenqvist and T. Hartvig: Part II, Meddelelse Nr. 12 fra Metallurisk Komite, Trondheim, Norway, 1958.

  57. F.D. Richardson and J.H.E. Jeffes: J. Iron Steel Inst., 1952, vol. 171, pp. 165–75.

    CAS  Google Scholar 

  58. K.K. Kelley: Bull. U.S. Bur. Mines, 1937, no. 406.

  59. D.R. Stull and H. Prophet: JANAF Thermochemical Tables, 2nd ed., U.S. National Bureau of Standards, Washington, DC, 1971.

    Google Scholar 

  60. I. Barin, O. Knacke, and O. Kubaschewski: Thermochemical Properties of Inorganic Substances, Springer-Verlag, Berlin, Germany, 1977.

    Google Scholar 

Download references

Acknowledgments

This work is supported by a grant from the National Natural Science Foundation of China (No. 51174186). The sincere thanks are also extended to Prof. Chang-xiang Xiang, on metallurgical physicochemistry at the School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, for valuable discussion and helps for preparing Section III–C on deciding the standard molar Gibbs free energy change of related reactions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xue-Min Yang.

Additional information

Manuscript submitted April 10, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, XM., Zhang, M., Li, PC. et al. A Thermodynamic Model for Representation Reaction Abilities of Structural Units in Fe-S Binary Melts Based on the Atom-Molecule Coexistence Theory. Metall Mater Trans B 43, 1358–1387 (2012). https://doi.org/10.1007/s11663-012-9707-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-012-9707-6

Keywords

Navigation