Skip to main content
Log in

Blast Furnace Ironmaking Process with Super High TiO2 in the Slag: High-Temperature Structure of the Slag

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

To increase the utilization fraction of V-Ti-Magnetite ore in the burden of the blast furnace over 80 pct, the technology of “replacing CaO with MgO” was discussed. The high content of TiO2-bearing raw materials leads to a super high TiO2 content in the blast furnace slag, which affects the normal operation of the blast furnace ironmaking process. The physicochemical properties of TiO2-bearing blast furnace slag such as viscosity are fundamentally determined by the high temperature and structure of the slag. In this study, Raman spectroscopy focusing on the effect of TiO2 and MgO/CaO ratio on the structure of super high TiO2-bearing blast furnace slag was performed. The results indicate that most of the Ti4+ ions are in the tetrahedron unit, and a few of Ti4+ ions are in the octahedron unit with a coordination number of six; this is confirmed by the presence an emission spectrum related to Ti-O stretching vibrations at wavenumbers less than 700 cm−1. The mole fraction of the band below 700 cm−1, which is related to the coupling of Al-O stretch vibration and the Ti-O stretch vibrations of Ti4+ in sixfold coordination, increased from 0.14 to 0.19 as the TiO2 content in CaO-SiO2-TiO2-MgO-Al2O3 slag increased from 20 to 34 mass pct. The (Q3)2/(Q2) ratio that is proposed as an index for the degree of polymerization (DOP) of melts decreased from 5.72 × 10−3 to 1.0 × 10−3 as the TiO2 content increased. Increasing the MgO/CaO ratio caused a slight decrease in the fraction of the bands below 700 cm−1 and resulted in the decrease of the (Q3)2/(Q2) ratio; thus, the DOP of the melts increased with increasing MgO/CaO ratio. The quantitative relationship, ln(η) = 0.91 + 0.11·ln((Q3)2/(Q2)), between the high-temperature structure information and the viscosity of TiO2-bearing blast furnace slag was established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. D. Chen, B. Song, L.N. Wang, T. Qi, Y. Wang and W.J. Wang: Miner. Eng., 2011, vol. 24 (8), pp. 864-869.

    Article  CAS  Google Scholar 

  2. L. Zhang, L. Zhang, M. Wang, G. Li and Z. Sui: Min. Eng., 2007, vol. 20, pp. 684-693.

    Article  CAS  Google Scholar 

  3. H. Li, H. Fang, K. Wang, W. Zhou, Z. Yang, X. Yan, W. Ge, Q. Li and B. Xie: Hydrometallurgy, 2015, vol. 156, pp. 124-135.

    Article  CAS  Google Scholar 

  4. P.R. Taylor, S. A. Shuey, E.E. Vidal and J.C. Gomez: Trans. Soc. Min. Metall. Explor., 2006, vol. 23, pp. 80-86.

    CAS  Google Scholar 

  5. Z. Yuan, X. Wang, C. Xu, W. Li and M. Kwauk: Minerals Engineering, 2006, vol. 19, pp. 975-978.

    Article  CAS  Google Scholar 

  6. F. Valighazvini, F. Rashchi, R Khayyam Nekouei: Ind. Eng. Chem. Res., 2013, vol. 52, pp. 1723-1730.

    Article  CAS  Google Scholar 

  7. Z. Pang, X. Lv, Y. Jiang, J. Ling and Z. Yan: Metall. Mater. Trans. B, 2020, vol. 51(2), pp. 722-731.

    Article  CAS  Google Scholar 

  8. B.O. Mysen, D. Virgo and F. Seifert: Carnegie Inst. Wash. Year Book, 1979, vol. 78, pp. 542-547.

    Google Scholar 

  9. B.O. Mysen, F.J Ryerson and D. Virgo: Am Miner., 1980, vol. 65, pp. 1150-1165.

    CAS  Google Scholar 

  10. B.O. Mysen, D. Virgo, C.M. Scarfe and D.J. Cronin: Am. Miner., 1980, vol. 65, pp. 690-710.

    CAS  Google Scholar 

  11. B.O. Mysen, D. Virgo and I. Kushiro: Am. Miner., 1981, vol. 66, pp. 678-701.

    CAS  Google Scholar 

  12. B.O. Mysen, D. Virgo and F.A. Seifert: Rev. Geophys., 1982, vol. 20, pp. 353-383.

    Article  CAS  Google Scholar 

  13. B.O. Mysen, L.W. Finger, D. Virgo and F.A. Seifert: Am. Miner., 1982, vol. 67, pp. 686-695.

    CAS  Google Scholar 

  14. B.O. Mysen: Earth Sci. Rev., 1990, vol. 27, pp. 281-365.

    Article  Google Scholar 

  15. B.O. Mysen and D. Neuville: Geochimlca et Cosmochimica Acta, 1995, vol. 59, pp. 325-342.

    Article  CAS  Google Scholar 

  16. D. Virgo, B.O. Mysen and I. Kushiro: Science,1980, vol. 208, pp. 1371-1373.

    Article  CAS  Google Scholar 

  17. P.F. Mcmillan and B. Piriou: J. Non-cryst. Solids, 1983, vol. 55, pp. 221-242.

    Article  CAS  Google Scholar 

  18. P.F. Mcmillan, B. Piriou and A. Navrotsky: Geochimica et Cos-mochimica Acta, 1982, vol. 46, pp. 2021-2037.

    Article  CAS  Google Scholar 

  19. P.F. McMillan: Am. Miner., 1984, vol. 69, pp. 645-659.

    CAS  Google Scholar 

  20. P.F. Mcmillan, B.T. Poe, P.H. Gillet and B. Reynard: Geochimica et Cosmochimica Acta, 1994, vol. 58, pp. 3653-3664.

    Article  CAS  Google Scholar 

  21. J.O.M. Bockris and D. L. Lowe: Proc. R. Soc. Lond, 1954, vol. 226, pp. 423-435.

    CAS  Google Scholar 

  22. J.O.M. Bockris: Faraday Soc Trans, 1955, vol. 51, pp. 1734-1748.

    Article  CAS  Google Scholar 

  23. S.A. Brawer: Phys. Rev. B, 1975, vol.11, pp. 3173-3194.

    Article  CAS  Google Scholar 

  24. S.A. Brawer and W.B. White: J. Chem. Phys, 1975, vol. 63, pp. 2421-2432.

    Article  CAS  Google Scholar 

  25. H. Flood and S. Knapp: J. Am. Ceram. Soc., 1968, vol. 51, pp. 259-263.

    Article  CAS  Google Scholar 

  26. J.R. Sweet and W.B. White: Phys. Chem. Glasses, 1969, vol. 10, pp. 246.

    CAS  Google Scholar 

  27. S.K. Sharma, D. Virgo and B.O. Mysen: Carnegie Inst. Washington Yearb. 1978, vol. 77, pp. 649.

    Google Scholar 

  28. D. Kato: J. Appl. Phys., 1976, vol. 47, pp. 2050-2055.

    Article  CAS  Google Scholar 

  29. P.P. Bihuniak and R.A. Condrate: J. Non-Cryst. Solids, 1981, vol. 44, pp. 331-344.

    Article  CAS  Google Scholar 

  30. K. Kusabiraki: J. Non-Cryst. Solids, 1986, vol. 79, pp. 208-212.

    Article  CAS  Google Scholar 

  31. D.S. Kight, C.G Pantano and W.B. White: Mater. Sci. Lett, 1989, vol. 8, pp. 156-160.

    Article  Google Scholar 

  32. G.S. Henderson and M.E. Fleet: Can. Mineral, 1995, vol. 33, pp. 399-408.

    CAS  Google Scholar 

  33. N. Iwamoto, Y. Tsunawaki, M. Fuji and T. Hatfori: J. Non-Cryst. Solids, 1975, vol. 18, pp. 303-306.

    Article  CAS  Google Scholar 

  34. T. Furukawa and W.B. White: Phys. Chem. Glasses, 1979, vol. 20, pp. 69-80.

    CAS  Google Scholar 

  35. S.A. Markgraf, S.K. Sharma and A.S. Bhalla: J. Am. Ceram. Soc, 1992, vol. 75, pp. 2630-2632.

    Article  CAS  Google Scholar 

  36. F. Farges, G.E Brown, A. Navrotsky, H. Gan and J.J. Rehr: Geochim. Cosmochim. Acta, 1996, vol. 60, pp. 3039-3053.

    Article  CAS  Google Scholar 

  37. B. Reynard and S.L. Webb: Eur. J. Mineral, 1998, vol. 10, pp. 49-58.

    Article  CAS  Google Scholar 

  38. L. Cormier, P.H Gaskell, G. Calas and A.K. Soper: Phys. Rev. B, 1998, vol. 58, pp. 11322-11330.

    Article  CAS  Google Scholar 

  39. M. Roskosz, M.J. Toplis and P. Richet: Geochim. Cosmochim. Acta, 2004, vol. 68, pp. 591-606.

    Article  CAS  Google Scholar 

  40. M. Guignard, L. Cormier, V. Montouillout, N. Menguy, D. Massiot and A.C. Hannon: J. Phys. Condens. Matter, 2009, vol. 21, pp. 375107.

    Google Scholar 

  41. H.V. Alberto, B.O. Mesen and N.A. Decampos: Phys. Chem. Glasses, 1995, vol. 36, pp. 114-122.

    CAS  Google Scholar 

  42. S. Zhang, X. Zhang, C. Bai, L. Wen and X. Lv: ISIJ Int., 2013, vol. 53, pp. 1131-1137.

    Article  CAS  Google Scholar 

  43. K. Zheng, Z. Zhang, L. Liu and X. Wang: Metall. Mater. Trans. B, 2014, vol. 45, pp. 1389-1397.

    Article  CAS  Google Scholar 

  44. K. Zheng, J. Liao, X. Wang and Z. Zhang: J. Non-Cryst. Solids, 2013, vol. 376, pp. 209-215.

    Article  CAS  Google Scholar 

  45. Z. Wang, Q. Shu and K. Chou: ISIJ Int., 2011, vol. 51, pp. 1021-1027.

    Article  CAS  Google Scholar 

  46. Z. Wang, Q. Shu and K. Chou: High Temp. Mater. Processes, 2013, vol. 32, pp. 265-273.

    Article  CAS  Google Scholar 

  47. Y. Sun, Z. Zhang, L. Liu and X. Wang: J. Non-Cryst. Solids, 2015, vol. 420, pp. 26-33.

    Article  CAS  Google Scholar 

  48. H. Park, J. Park, G. Kim and I. Sohn: Steel Res. Int., 2012, vol. 83, pp. 150-156.

    Article  CAS  Google Scholar 

  49. Y. Zhen, G. Zhang and K. Chou: ISIJ Int., 2014, vol. 54, pp. 985-989.

    Article  CAS  Google Scholar 

  50. S. Zhang, X. Zhang, W. Liu, X. Lv, C. Bai and L. Wang: J. Non-Cryst. Solids, 2014, vol. 402, pp. 214-222.

    Article  CAS  Google Scholar 

  51. Z. Pang, X. Lv, Z. Yan, D. Jiang and J. Dang: Metall. Mater. Trans. B, 2019, vol. 50, pp. 385-394.

    Article  CAS  Google Scholar 

  52. Y. Morizane, B. Ozturk and R.J. Fruehan: Metall. Mater. Trans. B, 1999, vol. 30, pp. 29-43.

    Article  CAS  Google Scholar 

  53. S.M. Jung and R. J. Fruehan: ISIJ Int., 2001, vol. 41, pp. 1447-1453.

    Article  CAS  Google Scholar 

  54. J.H. Park, S.B. Lee, D.S. Kim and J.J. Pak: ISIJ Int., 2009, vol. 49, pp. 337-342.

    Article  CAS  Google Scholar 

  55. S. Sakka, F. Miyaji and K. Fukumi: J. Non-Cryst. Solids, 1989, vol. 112, pp. 64-68.

    Article  Google Scholar 

  56. J.F. Stebbins, J. Wu and L.M. Thompson: Chem. Geol.,2013, vol. 346, pp. 34-46.

    Article  CAS  Google Scholar 

  57. S. Sukenaga, T. Higo, H. Shibata, N. Saito and K. Nakashima: ISIJ Int., 2015, vol. 55, pp. 1299-1304.

    Article  CAS  Google Scholar 

  58. K.C. Mills, M. Hayashi, L. Wang and T. Watanabe: Treatise on Process Metallurgy Process Fundamentals, 2014, vol.14, pp. 149-286.

    Article  CAS  Google Scholar 

  59. Z. Yan, X. Lv, W. He and J. Xu: ISIJ Int., 2017, vol. 57, pp. 31-36.

    Article  CAS  Google Scholar 

  60. Z. Yan, X. Lv, Z. Pang, X. Lv and C. Bai: Metall. Mater. Trans. B, 2018, vol. 49, pp. 1322-1330.

    Article  CAS  Google Scholar 

  61. Z. Yan, X. Lv, Z. Pang, W. He, D. Liang and C. Bai: Metall. Mater. Trans. B, 2017, vol. 48, pp. 2607-2614.

    Article  CAS  Google Scholar 

  62. J.H. Park: ISIJ Int., 2012, vol. 52, pp. 1627-1636.

    Article  CAS  Google Scholar 

  63. J.H. Park: Metall. Mater. Trans. B, 2013, vol. 44, pp. 938-947.

    Article  CAS  Google Scholar 

  64. J.H. Park, H. Kim and D.J. Min: Metall. Mater. Trans. B, 2008, vol. 39B, pp. 150-153.

    Article  CAS  Google Scholar 

  65. J.H. Park, D.J. Min and H.S. Song: ISIJ Int., 2002, vol. 42, pp. 344-351.

    Article  CAS  Google Scholar 

  66. S. Seetharaman, K. Mukai and D. Sichen: Steel Res. Int., 2005, vol. 76, pp. 267-278.

    Article  CAS  Google Scholar 

  67. I. Sohn, W. Wang, H. Matsuura, F. Tsukihashi and D.J. Min: ISIJ Int., 2012, vol. 52, pp. 158-160.

    Article  CAS  Google Scholar 

  68. G. Urbain and M. Boiret: Ironmak. Steelmak., 1990, vol. 17, pp. 255-260.

    CAS  Google Scholar 

  69. J. Kim, Y. Lee, D. Min, S. Jung and S. Yi: ISIJ Int., 2004, vol. 44, pp. 1291-1297.

    Article  CAS  Google Scholar 

  70. G. Handfield and G.G. Charette: Can. Metall. Q., 1971, vol. 10, pp. 235-243.

    Article  CAS  Google Scholar 

  71. K. Hu, X. Lv, S. Li, W. Lv, B. Song and K. Han: Metall. Mater. Trans. B, 2018, vol. 49, pp. 1963-1973.

    Article  CAS  Google Scholar 

  72. Y. Gao, L. Bian, Z. Liang: Steel Res. Int., 2015, vol. 86, pp. 386-390.

    Article  CAS  Google Scholar 

  73. C. Feng, M. Chu, J. Tang, Y. Tang and Z. Liu: Steel Res. Int.,2016, vol. 87, pp. 1274-1283.

    Article  CAS  Google Scholar 

  74. G. Zhang and K. Chou: Metall. Mater. Trans. B, 2012, vol. 43, pp. 841-848.

    Article  CAS  Google Scholar 

  75. Z. Yan, R. G. Reddy, X. Lv, Z. Pang, and W. He: Ironmak. Steelmak., 2018, pp. 1–7.

  76. R.G. Duan, K.M. Liang and G.U. Shouren: Mater. Trans. JIM, 1998, vol. 39, pp. 1162-1163.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors would feel grateful to the financial support by National Key R&D Program of China (Grant No. 2018YFC1900500).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xuewei Lv or Zhiming Yan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted March 7, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pang, Z., Lv, X., Ling, J. et al. Blast Furnace Ironmaking Process with Super High TiO2 in the Slag: High-Temperature Structure of the Slag. Metall Mater Trans B 51, 2348–2357 (2020). https://doi.org/10.1007/s11663-020-01929-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-020-01929-2

Navigation