Skip to main content
Log in

Blast furnace ironmaking process with super high TiO2 in the slag: Density and surface tension of the slag

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

Aiming at the process of smelting ultra-high (>80%) or even full vanadium titanomagnetite in blast furnace, we are conducting a series of works on physics character of high TiO2 bearing blast furnace slag (BFS) for slag optimization. This work discussed the density and surface tension of high TiO2 bearing BFS using the Archimedean principle and the maximum bubble pressure method, respectively. The influence of TiO2 content and the MgO/CaO mass ratio on the density and surface tension of CaO-SiO2-TiO2-MgO-Al2O3 slags were investigated. Results indicated that the density of slags decreased with the TiO2 content increasing from 20wt% to 30wt%, but it increased slightly with the MgO/CaO mass ratio increasing from 0.32 to 0.73. In view of silicate network structure, the density and the degree of polymerization (DOP) of network structure have a consistent trend. The addition of TiO2 reduced (Q3)2/(Q2) ratio (Q2 and Q3 represent structural unit with bridge oxygen number of 2 and 3, respectively) and then decreased DOP, which led to the decrease of slag density. The surface tension of CaO-SiO2-TiO2-MgO-Al2O3 slags decreased dramatically with the TiO2 content increasing from 20wt% to 30wt%. Conversely, it increased with the MgO/CaO mass ratio increasing from 0.32 to 0.73. Furthermore, the iso-surface tension lines were obtained under 1723 K using the Tanaka developed model in view of Butler formula. It may be useful for slag optimization of ultra-high proportion (>80%) or even full vanadium titanomagnetite under BF smelting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Hino, T. Nagasaka, A. Katsumata, K.I. Higuchi, K. Yamaguchi, and N. Kon-No, Simulation of primary-slag melting behavior in the cohesive zone of a blast furnace, considering the effect of Al2O3, FetO, and basicity in the sinter ore, Metall. Mater. Trans. B, 30(1999), No. 4, p. 671.

    Article  Google Scholar 

  2. N. Siddiqi, B. Bhoi, R.K. Paramguru, V. Sahajwalla, and O. Ostrovski, Slag-graphite wettability and reaction kinetics Part 1. Kinetics and mechanism of molten FeO reduction reaction, Ironmaking Steelmaking, 27(2000), No. 5, p. 367.

    Article  CAS  Google Scholar 

  3. M. Wegener, L. Muhmood, S. Sun, and A.V. Deev, Surface tension measurements of calcia-alumina slags: A comparison of dynamic methods, Metall. Mater. Trans. B, 46(2015), No. 1, p. 316.

    Article  CAS  Google Scholar 

  4. K. Ito and R.J. Fruehan, Study on the foaming of CaO-SiO2-FeO slags: Part I. Foaming parameters and experimental results, Metall. Trans. B, 20(1989), No. 4, p. 509.

    Article  Google Scholar 

  5. K. Ito and R.J. Fruehan, Study on the foaming of CaO-SiO2-FeO slags: Part II. Dimensional analysis and foaming in iron and steelmaking processes, Metall. Trans. B, 20(1989), No. 4, p. 515.

    Article  Google Scholar 

  6. H.L. George, R.J. Longbottom, S.J. Chew, and B.J. Monaghan, Flow of molten slag through a coke packed bed, ISIJ Int., 54(2014), No. 4, p. 820.

    Article  CAS  Google Scholar 

  7. D.D. Geleta, M.I.H. Siddiqui, and J. Lee, Characterization of slag flow in fixed packed bed of coke particles, Metall. Mater. Trans. B, 51(2020), No. 1, p. 102.

    Article  CAS  Google Scholar 

  8. L. Zhang, L.N. Zhang, M.Y. Wang, G.Q. Li, and Z.T. Sui, Recovery of titanium compounds from molten Ti-bearing blast furnace slag under the dynamic oxidation condition, Miner. Eng., 20(2007), No. 7, p. 684.

    Article  CAS  Google Scholar 

  9. D.S. Chen, B. Song, L.N. Wang, T. Qi, Y. Wang, and W.J. Wang, Solid state reduction of Panzhihua titanomagnetite concentrates with pulverized coal, Miner. Eng., 24(2011), No. 8, p. 864.

    Article  CAS  Google Scholar 

  10. F. Valighazvini, F. Rashchi, and R. Khayyam Nekouei, Recovery of titanium from blast furnace slag, Ind. Eng. Chem. Res., 52(2013), No. 4, p. 1723.

    Article  CAS  Google Scholar 

  11. P. Liu, L.B. Zhang, B.G. Liu, G.J. He, J.H. Peng, and M.Y. Huang, Determination of dielectric properties of titanium carbide fabricated by microwave synthesis with Ti-bearing blast furnace slag, Int. J. Miner. Metall. Mater., 28(2021), No. 1, p. 88.

    Article  CAS  Google Scholar 

  12. L.Z. Gao, T.X. Ma, M.J. Hu, Z.M. Yan, X.W. Lü, and M.L. Hu, Effect of titanium content on the precipitation behavior of carbon-saturated molten pig iron, Int. J. Miner. Metall. Mater., 26(2019), No. 4, p. 483.

    Article  CAS  Google Scholar 

  13. J.Y. Xiang, Q.Y. Huang, X. Lv, and C.G. Bai, Effect of mechanical activation treatment on the recovery of vanadium from converter slag, Metall. Mater. Trans. B, 48(2017), No. 5, p. 2759.

    Article  CAS  Google Scholar 

  14. G.Q. Ma and M. Cheng, Technological study of titanium slag production from titanium-bearing blast furnace slag, Adv. Mater. Res., 962–965(2014), p. 793.

    Article  CAS  Google Scholar 

  15. T.Q. Jiang, H.G. Dong, Y.F. Guo, G.H. Li, and Y.B. Yang, Study on leaching Ti from Ti bearing blast furnace slag by sulphuric acid, Miner. Process. Extr. Metall., 119(2010), No. 1, p. 33.

    Article  CAS  Google Scholar 

  16. Z.D. Pang, X.W. Lv, J.W. Ling, Y.Y. Jiang, Z.M. Yan, and J. Dang, Blast furnace ironmaking process with super high TiO2 in the slag: High-temperature structure of the slag, Metall. Mater. Trans. B, 51(2020), No. 5, p. 2348.

    Article  CAS  Google Scholar 

  17. Z.M. Yan, X.W. Lv, Z.D. Pang, X.M. Lv, and C.G. Bai, Transition of blast furnace slag from silicate based to aluminate based: Density and surface tension, Metall. Mater. Trans. B, 49(2018), No. 3, p. 1322.

    Article  CAS  Google Scholar 

  18. Y.H. Liu, X.W. Lv, C.G. Bai, and B. Yu, Surface tension of the molten blast furnace slag bearing TiO2: Measurement and evaluation, ISIJ Int., 54(2014), No. 10, p. 2154.

    Article  CAS  Google Scholar 

  19. V.B. Fainerman, R. Miller, and P. Joos, The measurement of dynamic surface tension by the maximum bubble pressure method, Colloid Polym. Sci., 272(1994), No. 6, p. 731.

    Article  CAS  Google Scholar 

  20. N. Ono, T. Kaneko, S. Nishiguchi, and M. Shoji, Measurement of temperature dependence of surface tension of alcohol aqueous solutions by maximum bubble pressure method, J. Therm. Sci. Technol., 4(2009), No. 2, p. 284.

    Article  CAS  Google Scholar 

  21. H.A. Friedrichs, L.W. Ronkow, P. Vermot, and S.A. Bliznjukow, New method for simultaneous measurement of viscosity, density and surface tension of metallic melts at high temperatures, Steel Res., 66(1995), No. 12, p. 509.

    Article  CAS  Google Scholar 

  22. G. Liu, J.M. Toguri, and N.M. Stubina, Surface tension and density of the molten LaCl3-NaCl binary system, Can. J. Chem., 65(1987), No. 12, p. 2779.

    Article  CAS  Google Scholar 

  23. T. Fujisawa, T. Utigard, and J.M. Toguri, Surface tension and density of the molten PbCl2-KCl-NaCl ternary system, Can. J. Chem., 63(1985), No. 5, p. 1132.

    Article  CAS  Google Scholar 

  24. A. Pamies, C. Garcia Cordovilla, and E. Louis, The measurement of surface tension of liquid aluminium by means of the maximum bubble pressure method: The effect of surface oxidation, Scripta Metall., 18(1984), No. 9, p. 869.

    Article  CAS  Google Scholar 

  25. O. Takeda, H. Iwamoto, R. Sakashita, C. Iseki, and H.M. Zhu, Development of maximum bubble pressure method for surface tension measurement of high viscosity molten silicate, Int. J. Thermophys., 38(2017), No. 7, art. No. 109.

    Google Scholar 

  26. F.A. Oliveira, A. Miller, and J. Madías, Surface tension, densities and viscosities of some CaO-Al2O3 slags, Rev. Metal., 35(1999), No. 2, p. 91.

    Article  CAS  Google Scholar 

  27. P. Vadász, M. Havlík, and V. Danêk, Density and surface tension of calcium-ferritic slags I. The systems Cao-FeO-Fe2O3-SiO2 and CaO-FeO-Fe2O3-Al2O3, Can. Metall. Q., 39(2000), No. 2, p. 143.

    Article  Google Scholar 

  28. K.C. Mills, Slag Atlas, 2nd ed., Verlag Stahleisen, Germany, 1995.

    Google Scholar 

  29. S. Sukenaga, S. Haruki, Y. Nomoto, N. Saito, and K. Nakashima, Density and surface tension of CaO-SiO2-Al2O3-R2O (R=Li, Na, K) melts, ISIJ Int., 51(2011), No. 8, p. 1285.

    Article  CAS  Google Scholar 

  30. A.I. Bochorishvili and S.B. Yakobashvili, Effect of metal oxide on the surface tension of lime-alumina slags, Svar. Proiz., 10(1968), No. 1, p. 13.

    Google Scholar 

  31. S. Sukenaga, T. Higo, H. Shibata, N. Saito, and K. Nakashima, Effect of CaO/SiO2 ratio on surface tension of CaO-SiO2-Al2O3-MgO melts, ISIJ Int., 55(2015), No. 6, p. 1299.

    Article  CAS  Google Scholar 

  32. W.D. Kingery, Surface tension of some liquid oxides and their temperature coefficients, J. Am. Ceram. Soc., 42(1959), No. 1, p. 6.

    Article  CAS  Google Scholar 

  33. J.A.V. Butler, The thermodynamics of the surfaces of solutions, Proc. R. Soc. London A, 135(1932), No. 827, p. 348.

    Article  CAS  Google Scholar 

  34. B.O. Mysen, F.J Ryerson, and D. Virgo, The influence of TiO2 on the structure and derivative properties of silicate melts, Am Miner., 65(1980), No. 11-1, p. 1150.

    CAS  Google Scholar 

  35. B.O. Mysen, D. Virgo, C.M. Scarfe, and D.J. Cronin, Relations between the anionic structure and viscosity of silicate melts; a Raman spectroscopic study, Am. Mineral., 65(1980), No. 7–8, p. 690.

    CAS  Google Scholar 

  36. B.O. Mysen, D. Virgo, and I. Kushiro, The structural role of aluminium in silicate melts—A Raman spectroscopic study at 1 atmosphere, Am. Mineral., 66(1981), No. 7, p. 678.

    CAS  Google Scholar 

  37. B.O. Mysen, D. Virgo, and F.A. Seifert, The structure of silicate melts: Implications for chemical and physical properties of natural magma, Rev. Geophys. Space Phys., 20(1982), No. 3, p. 353.

    Article  CAS  Google Scholar 

  38. B.O. Mysen, L.W. Finger, D. Virgo, and F.A. Seifert, Curve-fitting of Raman spectra of silicate glasses, Am. Mineral., 67(1982), No. 7, p. 686.

    CAS  Google Scholar 

  39. K.C. Mills, M. Hayashi, L.J. Wang, and T. Watanabe, The structure and properties of silicate slags, [in] Treatise on Process Metallurgy, Elsevier, Amsterdam, 2014, p. 149.

    Chapter  Google Scholar 

  40. K.C. Mills, The estimation of slag properties, [in] Southern African Pyrometallurgy 2011 International Conference, Southern African, 2011.

    Google Scholar 

  41. K.C. Mills, L. Yuan, and R.T. Jones, Estimating the physical properties of slags, J. South Afr. Inst. Min. Metall., 111(2011), p. 649.

    CAS  Google Scholar 

  42. T. Tanaka, K. Hack, T. Iida, and S. Hara, Application of thermodynamic databases to the evaluation of surface tensions of molten alloys, salt mixtures and oxide mixtures, Int. J. Mater. Res., 87(1996), No. 5, p. 380.

    Article  CAS  Google Scholar 

  43. T. Tanaka, T. Kitamura, and I.A. Back, Evaluation of surface tension of molten ionic mixtures, ISIJ Int., 46(2006), No. 3, p. 400.

    Article  CAS  Google Scholar 

  44. M. Nakamoto, A. Kiyose, T. Tanaka, L. Holappa, and M. Hämäläinen, Evaluation of the surface tension of ternary silicate melts containing Al2O3, CaO, FeO, MgO or MnO, ISIJ Int., 47(2007), No. 1, p. 38.

    Article  CAS  Google Scholar 

  45. M. Nakamoto, M. Hanao, T. Tanaka, M. Kawamoto, L. Holappa, and M. Hämäläinen, Estimation of surface tension of molten silicates using neural network computation, ISIJ Int., 47(2007), No. 8, p. 1075.

    Article  CAS  Google Scholar 

  46. M. Hanao, T. Tanaka, M. Kawamoto, and K. Takatani, Evaluation of surface tension of molten slag in multi-component systems, ISIJ Int., 47(2007), No. 7, p. 935.

    Article  CAS  Google Scholar 

  47. R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystallogr. Sect. A, 32(1976), No. 5, p. 751.

    Article  Google Scholar 

  48. I. Sohn and D.J. Min, A review of the relationship between viscosity and the structure of calcium-silicate-based slags in ironmaking, Steel Res. Int., 83(2012), No. 7, p. 611.

    Article  CAS  Google Scholar 

  49. R. Knoche, D.B. Dingwell, and S.L. Webb, Melt densities for leucogranites and granitic pegmatites: Partial molar volumes for SiO2, Al2O3, Na2O, K2O, Li2O, Rb2O, Cs2O, MgO, CaO, SrO, BaO, B2O3, P2O5, F2O−1, TiO2, Nb2O5, Ta2O5, and WO3, Geochim. Cosmochim. Acta, 59(1995), No. 22, p. 4645.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key R&D Program of China (No. 2018YFC1900500) and the Key Fund of Natural Science (No. 51974048).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xuewei Lü or Zhiming Yan.

Ethics declarations

The authors have no relevant financial or non-financial interests to disclose.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pang, Z., Jiang, Y., Ling, J. et al. Blast furnace ironmaking process with super high TiO2 in the slag: Density and surface tension of the slag. Int J Miner Metall Mater 29, 1170–1178 (2022). https://doi.org/10.1007/s12613-021-2262-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-021-2262-x

Keywords

Navigation