Skip to main content
Log in

Solubilization of Rhodium in Hydrochloric Acid Using an Alkali Metal Salt Method

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Acids such as aqua regia, a 3:1 mixture of hydrochloric acid (HCl) and nitric acid, that contain strong oxidizing agents are used in the dissolution-based recovery of platinum group metals (PGMs). However, nitrate-nitrogen emission has become subject to increasingly strict environmental regulations in recent years. Accordingly, we herein propose a dissolution process for PGMs via the formation of complex oxides using HCl alone. We prepared complex oxides of alkali metals and rhodium (Rh), which is particularly hard to dissolve, and investigated their dissolution behaviors in HCl. Rh-containing complex oxides were prepared by calcining Rh powder and alkali metal salts in air, and dissolution tests using HCl were conducted on the complex oxides obtained. It was found that Rh-containing complex oxides were completely dissolved under appropriate calcination and dissolution conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. J. Zhang, M.P. Everson, T.J. Wallington, F.R. Field, R. Roth, and R.E. Kirchain: Environ. Sci. Technol., 2016, vol. 50, pp. 7687−7695.

    Article  CAS  Google Scholar 

  2. Thomson Reuters: GFMS Platinum Group Metals Survey 2018, 2018.

  3. E. Kizilaslan, S. Aktaş, and M.K. Şeşen: Turkish J. Eng. Env. Sci., 2009, vol. 33, pp. 83–90.

    CAS  Google Scholar 

  4. M.K. Jha, J.-C. Lee, M.-S. Kim, J. Jeong, B.-S. Kim, and V. Kumar: Hydrometallurgy, 2013, vol. 133, pp. 23–32.

    Article  CAS  Google Scholar 

  5. K. Fujita, H. Onoue, and K. Sakiyama: Corros. Eng. (Boshoku-Gijutsu), 1970, vol. 19, pp. 340−345 (in Japanese).

    CAS  Google Scholar 

  6. World Health Organization: Guidelines for Drinking-Water Quality, 4th ed., 2011, Chapter 8 Chemical aspects, pp. 155–201.

  7. Online document: Ministry of the Environment, Environmental quality standards for human health. http://www.env.go.jp/en/water/wq/wp.pdf. Accessed 9 November 2018

  8. Online document: Ministry of the Environment, National Effluent Standards. https://www.env.go.jp/en/water/wq/nes.html, 2015. Accessed 9 November 2018.

  9. Online document: Ministry of the Environment, Ministerial Ordinance of the Effluent Standards. http://elaws.e-gov.go.jp/search/elawsSearch/elaws_search/lsg0500/detail?lawId=346M50000002035#120, 2016. Accessed 9 November 2018.

  10. Y. Kayanuma, S. Mizuhashi, and Y. Shindo: J. Jpn. Inst. Met. Mater., 2017, vol 4, pp. 152–156 (in Japanese).

    Article  CAS  Google Scholar 

  11. Organization site: Code of Federal Regulations, Title 40 Protection of Environment, https://www.ecfr.gov/. Accessed 11 January, 2019.

  12. Organization site: Code of Federal Regulations, Title 40 Protection of Environment, Part 421, Nonferrous Metals Manufacturing Point Source Category, Retrieved from https://www.ecfr.gov/. Accessed 11 January, 2019.

  13. European Communities: Off. J. Eur. Commun., 1991, vol. L135, pp. 1–13.

    Google Scholar 

  14. European Communities: Off. J. Eur. Commun., 1991, vol. L375, pp. 1–8.

    Google Scholar 

  15. J.E. Barnes and J.D. Edwards: Chem. Ind., 1982, vol. 5, pp. 151–155.

    Google Scholar 

  16. T.H. Okabe and K. Nose: The Latest Technological Trend of Rare Metals, CMC Publishing Co., Ltd., Tokyo, 2012, pp. 76–84 (in Japanese).

    Google Scholar 

  17. Y. Cao, A. Shibayama, S. Harjanto, I. Naitoh, T. Nanami, T. Kasahara, and T. Fujita: Trans. Soc. Automotive Eng. Jpn., 2007, vol. 38, pp. 55–61.

    Google Scholar 

  18. . W. Westwood: Platinum Supplement, Gmelin Handbook of Inorganic Chemistry, 8th Ed., Springer-Verlag, 1985, vol. A1, pp. 30−32.

    Google Scholar 

  19. K. Gloe, P. Mühl, and M. Knothe: Hydrometallurgy, 1990, vol. 25, pp. 99−110.

    Article  CAS  Google Scholar 

  20. M. M. Totland, I. Jarvis, and K. E. Jarvis: Chem. Geol., 1995, vol. 124, pp. 21−36.

    Article  CAS  Google Scholar 

  21. J. Lee and Y. Kim: Mater. Trans., 2011, vol. 52, pp. 2067−2070.

    Article  CAS  Google Scholar 

  22. K. J. De Vries and P. J. Gellings: J. Inorg. Nucl. Chem., 1969, vol. 31, pp. 1307−1313.

    Article  Google Scholar 

  23. T. H. Okabe, Y. Kayanuma, S. Yamamoto and M. Maeda: Mater. Trans., 2003, vol. 44, pp. 1386−1393.

    Article  CAS  Google Scholar 

  24. K. Nomura, M. Daté, H. Kageyama, and S. Tsubota, J. Mater. Res., 2007, vol. 22, pp. 2647−2650.

    Article  CAS  Google Scholar 

  25. M. Daté, K. Nomura, H. Kageyama, and T. Fujitani, ChemPhysChem, 2011, vol. 12, pp. 109−111.

    Article  CAS  Google Scholar 

  26. R. Kasuya, T. Miki, and Y. Tai: J. Ceram. Soc. Jpn., 2013, vol. 121, pp. 261–264.

    Article  CAS  Google Scholar 

  27. R. Kasuya, T. Miki, H. Morikawa, and Y. Tai: J. Ceram. Soc. Jpn., 2013, vol. 121, pp. 884–890.

    Article  CAS  Google Scholar 

  28. R. Kasuya, T. Miki, H. Morikawa, and Y. Tai: Int. J. Miner. Process., 2014, vol. 128, pp. 33–39.

    Article  CAS  Google Scholar 

  29. R. Kasuya, T. Miki, H. Morikawa, and Y. Tai: Miner. Eng., 2015, vol. 76, pp. 135–140.

    Article  CAS  Google Scholar 

  30. R. Kasuya, T. Miki, H. Morikawa, and Y. Tai: Metal. Mater. Trans. B, 2015, vol. 46, pp. 2476–2483.

    Article  CAS  Google Scholar 

  31. R. Kasuya, T. Miki, H. Morikawa, and Y. Tai: Miner. Eng., 2016, vol. 87, pp. 25–31.

    Article  CAS  Google Scholar 

  32. F. Izumi and K. Momma: Solid State Phenom., 2007, vol. 130, pp. 15–20.

    Article  CAS  Google Scholar 

  33. A. Mendiboure, H. Eickenbusch, R. Schöllhorn, and G. V. Subba Rao: J. Solid State Chem., 1987, vol. 71, pp. 19–28.

    Article  CAS  Google Scholar 

  34. R. W. G. Wyckoff: Crystal Structures, 2nd ed., Interscience Publishers, New York, 1963, vol. 1, pp. 7–83.

    Google Scholar 

  35. . S.H. Yao, B.B. Zhang, J. Zhou, Y.B. Chen, S.T. Zhang, Z.B. Gu, S.T. Dong, and Y.F. Chen: AIP Advances, 2012, vol. 2, pp. 042140/1−7.

    Google Scholar 

  36. K.T. Jacob, and Y. Waseda: J. Solid State Chem., 2000, vol. 150, pp. 213–220.

    Article  CAS  Google Scholar 

  37. H. Müller-Buschbaum: Z. Anorg. Allg. Chem., 2007, vol. 633, pp. 1289–1306 (in German).

    Article  Google Scholar 

  38. . K. Hobbie and R. Hoppe: Z. Anorg. Allg. Chem., vol. 535, pp. 20–30 (in German).

    Article  CAS  Google Scholar 

  39. Y. Okamoto, S. Niitaka, M. Uchida, T. Waki, M. Takigawa, Y. Nakatsu, A. Sekiyama, S. Suga, R. Arita, and H. Takagi: Phys. Rev. Lett., 2008, vol. 101, pp. 086404

    Google Scholar 

  40. Y. Luo, C. Cao, B. Si, Y. Li, J. Bao, H. Guo, X. Yang, C. Shen, C. Feng, J. Dai, G. Cao, and Z. Xu: Phys. Rev. B, 2013, vol. 87, pp. 161121.

    Google Scholar 

  41. K.T. Jacob, D. Prusty, and G.M. Kale: J. Alloy. Compd., 2012, vol. 513, pp. 365–372.

    Article  CAS  Google Scholar 

  42. K. Yamaura, Q. Huang, M. Moldovan, D.P. Young, A. Sato, Y. Baba, T. Nagai, Y. Matsui, and E. Takayama-Muromachi: Chem. Mater., 2005, vol. 17, pp. 359–365.

    Article  CAS  Google Scholar 

  43. V. Todorova and M. Jansen: Z. Anorg. Allg. Chem., 2011, vol. 637, pp. 37–40.

    Article  CAS  Google Scholar 

  44. K. Momma and F. Izumi: J. Appl. Crystallogr., 2011, vol. 44, pp. 1272–1276.

    Article  CAS  Google Scholar 

  45. G. Brauer: Handbook of Preparative Inorganic Chemistry, 2nd ed., Academic Press, New York, 1965, pp. 1587.

    Google Scholar 

  46. F.L. Bernardis, R.A. Grant, and D.C. Sherington: React. Funct. Polym., 2005, vol. 65, pp. 205–217.

    Article  CAS  Google Scholar 

  47. G. Levitin, and G. Schmuckler: React. Funct. Polym., 2003, vol. 54, pp. 149–154.

    Article  CAS  Google Scholar 

  48. D.C. Harris: Quantitative Chemical Analysis, 7th ed., W. H. Freeman and Company, New York, 2007, pp. AP20–AP27.

    Google Scholar 

  49. D. R. Lide: CRC Handbook of Chemistry and Physics, CRC Press: Boca Raton, FL, 2005.

    Google Scholar 

  50. Z. Marczenko and M. Balcerzak: Separation, Preconcentration and Spectrophotometry in Inorganic Analysis, 2000, Analytical Spectroscopy Library, vol. 10, Chapter 25: Iodine.

  51. H. Narita, T. Suzuki, and R. Motokawa: J. Jpn. Inst. Met. Mater., 2017, vol. 81, pp. 157–167 (in Japanese).

    Article  CAS  Google Scholar 

  52. H. Narita, K. Morisaku, and M. Tanaka: Chem. Commun., 2008, vol. 45, pp. 5921–5923.

    Article  CAS  Google Scholar 

  53. H. Narita, K. Morisaku, and M. Tanaka: Solvent Extr. Ion. Exch., 2015, vol. 33, pp. 407–417.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by a Grant from the Environment Research and Technology Development Fund (3K163010) of the Environmental Restoration and Conservation Agency (ERCA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryo Kasuya.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted May 30, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kasuya, R., Nomura, K. & Narita, H. Solubilization of Rhodium in Hydrochloric Acid Using an Alkali Metal Salt Method. Metall Mater Trans B 51, 377–385 (2020). https://doi.org/10.1007/s11663-019-01740-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-019-01740-8

Navigation