Skip to main content
Log in

Dissolution Process of Palladium in Hydrochloric Acid: A Route via Alkali Metal Palladates

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

To improve the safety of the Pd recovery processes that use toxic oxidizers, dissolution of Pd in hydrochloric acid with alkali metal palladates was investigated. Alkali metal palladates were prepared by calcining a mixture of Pd black and alkali metal (Li, Na, and K) carbonates in air. Almost the entire amount of Pd was converted into Li2PdO2 after calcination at 1073 K (800 °C) using Li2CO3. In contrast, PdO was obtained by calcination at 1073 K (800 °C) using Na and K carbonates. Our results indicated that Li2CO3 is the most active reagent among the examined alkali metal carbonates for the formation of palladates. In addition, dissolution of the resulting Li2PdO2 in HCl solutions was evaluated under various conditions. In particular, Li2PdO2 rapidly dissolved in diluted (0.1 M) HCl at ambient temperature. Solubility of Pd of Li2PdO2 was found to be 99 pct or larger after dissolution treatment at 353 K (80 °C) for 5 minutes; in contrast, PdO hardly dissolved in 0.1 M HCl. The dissolution mechanism of Li2PdO2 in HCl was also elucidated by analysis of crystal structures and particulate properties. Since our process is completely free from toxic oxidizers, the dissolution process via alkali metal palladates is much safer than currently employed methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Johnson Matthey Plc.: Platinum 2013 interim review, London, UK, 2013.

  2. Y. Furuse: Mineral Resources Report, JOGMEC, 2012, pp. 477–98.

  3. D. Jollie: Platinum 2007, Johnson Matthey Plc., London, 2007.

    Google Scholar 

  4. Y. Furuse: Mineral Resources Report, JOGMEC, 2013, pp. 581–95.

  5. D.R. Lide, ed.: CRC Handbook of Chemistry and Physics 82th edn., CRC Press, Boca Raton, 2001, pp. 5-4–5-60.

  6. M. Baghalha, H. Khosravian Gh and H.R. Mortaheb: Hydrometallurgy, 2009, vol. 95, pp. 247–53.

    Article  Google Scholar 

  7. J.H. Potgieter, S.S. Potgieter, R.K.K. Mbaya and A. Teodorovic: J. S. Afr. Inst. Min. Metall., 2004, vol. 104, pp. 563–72.

    Google Scholar 

  8. J.E. Barnes and J.D. Edwards: Chem. Ind., 1982, vol. 6, 151–55.

    Google Scholar 

  9. T.H. Okabe and K. Nose: The Latest Technological Trend of Rare Metals, Chapter 9-3, CMC, 2012.

  10. R. Kasuya, T. Miki and Y. Tai: J. Ceram. Soc. Jpn., 2013, vol. 121, pp. 261–64.

    Article  Google Scholar 

  11. R. Kasuya, T. Miki, H. Morikawa and Y. Tai: J. Ceram. Soc. Jpn., 2013, vol. 121, pp. 884–90.

    Article  Google Scholar 

  12. R. Kasuya, T. Miki, H. Morikawa and Y. Tai, Int. J. Miner. Process., 2014, vol. 128, pp. 33–39.

    Article  Google Scholar 

  13. E. Jackwerth and S. Gomišček: Pure Appl. Chem., 1984, vol. 56, pp. 479–89.

    Article  Google Scholar 

  14. H. Zhang, J. Gromek, G.W. Fernando, S. Boorse and H.L. Marcus: J. Phase Equilib., 2002, vol. 23, pp. 246–48.

    Article  Google Scholar 

  15. H.P. Klug and L.E. Alexander: X-ray diffraction procedures: for polycrystalline and amorphous materials. Wiley, New York, NY, 1974.

    Google Scholar 

  16. I. Barin and O. Knacke, ed.: Thermochemical Properties of Inorganic Substances, Springer-Verlag, New York, NY, 1973.

  17. B.L. Dubey, J.A. Gard, F.P. Glasser and A.R. West: J. Solid State Chem., 1973, vol. 6, pp. 329–34.

    Article  Google Scholar 

  18. M.J. O’Malley, H. Verweij and P.M. Woodward, J. Solid State Chem., 2008, vol. 181, pp. 1803–09.

    Article  Google Scholar 

  19. K. Momma and F. Izumi: J. Appl. Crystallogr., 2011, vol. 44, pp. 1272–76.

    Article  Google Scholar 

  20. L.I. Elding, Inorg. Chim. Acta, 1972, vol. 6, pp. 647–51.

    Article  Google Scholar 

  21. F.L. Bernardis, R.A. Grant and D.C. Sherrington: React. Funct. Polym., 2005, vol. 65, pp. 205–17.

    Article  Google Scholar 

  22. Y. Kawano, R. Morita, T. Matsui, K. Kondo and F. Nakashio: J. Chem. Eng. Jpn., 1990, vol. 23, pp. 611–15.

    Article  Google Scholar 

  23. T. Sato, T. Takayanagi and K. Sato: J. MMIJ, 2011, vol. 127, pp. 526–32.

    Article  Google Scholar 

Download references

Acknowledgment

This study was supported by a Grant-in-Aid for Challenging Exploratory Research, No. 23656566 from The Naito Science & Engineering Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryo Kasuya.

Additional information

Manuscript submitted July 10, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kasuya, R., Miki, T., Morikawa, H. et al. Dissolution Process of Palladium in Hydrochloric Acid: A Route via Alkali Metal Palladates. Metall Mater Trans B 46, 2476–2483 (2015). https://doi.org/10.1007/s11663-015-0431-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-015-0431-x

Keywords

Navigation