Skip to main content
Log in

A Finite-Element Approach for the Partitioning of Carbon in Q&P Steel

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

This paper reports a Galerkin finite-element analysis of carbon partitioning from martensite into austenite during the quenching and partitioning (Q&P) processes in steels. In contrast to classical or sophisticated diffusion field models, an alternative nonlinear governing equation based on chemical potential and composition is considered. The model is applied to simulate the carbon partitioning of modified 22MnB5 alloys assuming an immobile austenite–martensite phase boundary and, in turn, is compared with experimental measurements of the volume fraction and carbon content of retained austenite. The simulations show outstanding results on the influence of Si and C content on the partitioning parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. J. Speer, D. K. Matlock, B. C. D. Cooman, and J. G. Schroth: Acta Mater., 2003, vol. 51, pp. 2611–2622.

    Article  Google Scholar 

  2. J. Speer, A. Streicher, D. Matlock, F. Rizzo, and G. Krauss: in Symposium on the Thermodynamics, Kinetics, Characterization and Modeling of: Austenite Formation and Decomposition, 2003, pp. 505–22.

  3. Y. Sakuma, O. Matsumura, and H. Takechi: Metall. Trans. A, 1991, vol. 22A, pp. 489–498.

    Article  Google Scholar 

  4. S. Keeler and M. Kimchi: Advanced High-Strength Steels Application Guidelines V5, WorldAutoSteel, 2015.

  5. S. A. Mujahid and H. K. D. H. Bhadeshia: Acta Metall. Mater., 1992, vol. 40, pp. 389–96.

    Article  Google Scholar 

  6. E. J. Seo, L. Cho, and B. C. De Cooman: Acta Mater., 2016, vol. 107, pp. 354–365.

    Article  Google Scholar 

  7. D.V. Edmonds, K. He, F.C. Rizzo, B.C.D. Cooman, D.K. Matlock, and J.G. Speer: Mater. Sci. Eng. A, 2006, vol. 438, pp. 25–34.

    Article  Google Scholar 

  8. F. Peng, Y. Xu, X. Gu, Y. Wang, X. Liu, and J. Li: Mater. Sci. Eng. A, 2018, vol. 723, pp. 247–258.

    Article  Google Scholar 

  9. B. M. Linke, T. Gerber, A. Hatscher, I. Salvatori, I. Aranguren, and M. Arribas: Metall. Mater. Trans. A, 2018, vol. 49, pp. 54–65.

    Article  Google Scholar 

  10. J. O. Andersson, T. Helander, L. Hglund, P. Shi, and S. Bo: CALPHAD, 2002, vol. 26, pp. 273–312.

    Article  Google Scholar 

  11. O. Dmitrieva, D. Ponge, G. Inden, J. Milln, P. Choi, J. Sietsma, and D. Raabe: Acta Mater., 2011, vol. 59, pp. 364–374.

    Article  Google Scholar 

  12. D. A. Porter, K. E. Easterling, and M. Sherif: Ref. User Services Q., 1992, vol. 1, p. 245.

    Google Scholar 

  13. A. J. Clarke, J. G. Speer, D. K. Matlock, F. C. Rizzo, D. V. Edmonds, and M. J. Santofimia: Scr. Mater., 2009, vol. 61, pp. 149–152.

    Article  Google Scholar 

  14. J. N. Reddy: An Introduction to the Finite Element Method, vol. 2, McGraw-Hill, 1993.

    Google Scholar 

  15. T. R. Chandrupatla, A. D. Belegundu, T. Ramesh, and C. Ray: Introduction to finite elements in engineering, vol. 2, Prentice Hall , Upper Saddle River, NJ, 2002.

    Google Scholar 

  16. D. L. Logan: A First Course in the Finite Element Method, Cengage Learning, 2011.

    Google Scholar 

  17. T. Dupont, G. Fairweather, and J. P. Johnson: SIAM J. Numer. Anal., 1974, vol. 11, pp. 392–410.

    Article  Google Scholar 

  18. C. Li and B. G. Thomas: Metall. Mater. Trans. B, 2004, vol. 35B, pp. 1151–1172.

    Article  Google Scholar 

  19. M. J. Santofimia, J. G. Speer, A. J. Clarke, L. Zhao, and J. Sietsma: Acta Mater., 2009, vol. 57, pp. 4548–4557.

    Article  Google Scholar 

  20. A.S. Nishikawa, M.J. Santofimia, J. Sietsma, and H. Goldenstein: Acta Mater., 2018, vol. 142, 142–151.

    Article  Google Scholar 

  21. B. Zhu, Z. Liu, Y. Wang, B. Rolfe, L. Wang, and Y. Zhang: Metall. Mater. Trans. A, 2018, vol. 49, pp. 1304–1312.

    Article  Google Scholar 

  22. D. Koistinen and R. Marburger: Acta Metall., 1959, vol. 7, pp. 59–60.

    Article  Google Scholar 

  23. E. J. Seo, L. Cho, and B. C. D. Cooman: Metall. Mater. Trans. A, 2016, vol. 47, pp. 3797–3802.

    Article  Google Scholar 

  24. S. Van Bohemen and J. Sietsma: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 1059–1068.

    Article  Google Scholar 

  25. S.-J. Lee and C. J. Van Tyne: Metall. Mater. Trans. A, 2012, vol. 43A, pp. 422–427.

    Article  Google Scholar 

  26. M. Chen, R. Wu, H. Liu, L. Wang, J. Shi, H. Dong, and X. Jin: Science China Technological Sciences, 2012, vol. 55, pp. 1827–32.

    Article  Google Scholar 

  27. K. Zhang, M. Zhang, Z. Guo, N. Chen, and Y. Rong: Mater. Sci. Eng. A, 2011, vol. 528, pp. 8486–91.

    Article  Google Scholar 

  28. A. Kokosza and J. Pacyna: Metall. Mater. Trans. A, 2008, vol. 31, p. 593–99.

    Google Scholar 

  29. D.T. Pierce, D.R. Coughlin, K.D. Clarke, E.D. Moor, J. Poplawsky, D.L. Williamson, B. Mazumder, J.G. Speer, A. Hood, and A.J. Clarke: Acta Mater., 2018, vol. 151.

  30. Z.B. Tong, T. Di, J.H. Tao: J. Univ. Sci. Technol. Beijing, 2012, vol. 34, pp. 1288–1293.

    Google Scholar 

  31. M.J. Khknen, E.D. Moor, J. Speer, and G. Thomas: SAE Int. J. Mater. Manuf., 2015, vol. 8.

  32. T. Y. Hsu and X. Jin: Ultra-high Strength Steel Treated by Using Quenching–Partitioning–Tempering Process, Springer Berlin Heidelberg, 2011.

    Book  Google Scholar 

  33. J. Kahkonen: Ph.D. Thesis, Colorado School of Mines. Arthur Lakes Library, 2016.

  34. E. D. Moor, S. Lacroix, A. J. Clarke, J. Penning, and J. G. Speer: Metall. Mater. Trans. A, 2008, vol. 39A, p. 2586.

    Article  Google Scholar 

  35. S.-J. Lee, D. K. Matlock, and C. J. Van Tyne: ISIJ Int., 2011, vol. 51, pp. 1903–1911.

    Article  Google Scholar 

  36. J. Gren: Acta Metall., 30, pp. 841–851 (1982).

    Article  Google Scholar 

  37. L.O. Wolf, F. Nrnberger, D. Rodman, and H. J. Maier: Steel Res. Int., 88: 271 (2016).

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to the financial support of the National Key Research and Development Program of China (No. 2017YFB0304401) (No. 2017YFB0703003), National Natura Science Foundation of China (U1564203, Nos.51571141 and 51201105), and the Interdisciplinary Program of Shanghai Jiao Tong University (No.YG2014MS23). Julio C. Gonzalez Lainez is grateful to Professor Wei Li and Doctor Yu Gong, School of Materials Science & Engineering, Shanghai Jiao Tong University, for the stimulating discussions that contributed to guide this research all along its development. The authors are very gratefully to the support provided by the Chinese Scholarship Council (CSC).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Li or Yu Gong.

Additional information

Manuscript submitted October 25, 2018.

Appendix

Appendix

Figure A1 describes the comparison of the carbon distribution in the austenite domain obtained from Thermo-Calc (DICTRA, by the combination of database MOBFE3 with TCFE8)[10] with the current computational simulation. It is worth noting that the commercial software Thermo-Calc (version 2017a and older) lacks a thermodynamic database termed as “martensite” or “BCT” (Body Centered Tetragonal). Hence, the DICTRA module considers that martensite and ferrite phases have similar thermodynamic data. As expected, a significant deviation between both models is found as the partitioning time increases, because DICTRA module limits the system setup to only four elements and the carbon diffusion coefficient determined by Agreen’s equation simply considers the carbon content. In contrast, the carbon diffusion coefficient calculated from Lee’s model considers the effect of alloying elements.

Fig. A1
figure 6

C distribution in austenite phase during the Q&P process predicted by (left) DICTRA module and (right) current numerical simulation. (a) HSi-LC at 723 K (\(\approx 450 ^{\circ }\)C), (b) HSi-LC at 673 K (\(\approx 400 ^{\circ }\)C), (c) HSi-LC at 572 K (\(\approx 300 ^{\circ }\)C)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gonzalez L., J.C., Li, W., Gong, Y. et al. A Finite-Element Approach for the Partitioning of Carbon in Q&P Steel. Metall Mater Trans B 50, 1417–1427 (2019). https://doi.org/10.1007/s11663-019-01567-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-019-01567-3

Navigation