Skip to main content
Log in

Effect of Addition of Other Acids into Butyric Acid on Selective Leaching of Zinc from Basic Oxygen Steelmaking Filter Cake

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The selective leaching of zinc over iron from basic oxygen steelmaking (BOS) filter cake was investigated using mixtures of butyric acid with acetic and/or propionic acid, HCl, or H2SO4. The main focus was to assess the effects of other acids on the zinc and iron leaching in butyric acid. The results show that slight reduction of zinc leaching and increase in iron leaching may take place with addition of acetic and propionic acids, causing a minor decrease in the selectivity of zinc leaching over iron. Intermittent addition of H2SO4 and HCl was required to control the pH to be not less than that of pure butyric acid solution. Overall, an excellent selectivity can be maintained with the butyric acid–other acid mixtures. The results demonstrate the feasibility to use raw butyric acid without purification or waste butyric acid containing other impurity acids for leaching of zinc from the BOS filter cake to be recycled. Using high content of H2SO4 in leaching is not recommended because it has a more detrimental effect on the selectivity of zinc leaching and may cause deposition of CaSO4 in the leaching residue which may increase the SO2 or CO2 emission in later high-temperature recycling processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Z.H. Trung, F. Kukurugya, Z. Takacova, D. Orac, M. Laubertova, A. Miskufova, and T. Havlik: J. Hazard. Mater., 2011, vol. 192, pp. 1100-07.

    Article  Google Scholar 

  2. B. Das, S. Prakash, P. Reddy, and V. Misra: Resour. Conserv. Recycl., 2007, vol. 50, pp. 40-57.

    Article  Google Scholar 

  3. K. Gargul, and B. Boryczko: Arch. Civ. Mech. Eng., 2015, vol. 15, pp. 179-87.

    Article  Google Scholar 

  4. S. Kelebek, S. Yörük, and B. Davis: Miner. Eng., 2004, vol. 17, pp. 285-91.

    Article  Google Scholar 

  5. J. Vereš, M. Lovás, Š. Jakabský, V. Šepelák, and S. Hredzák: Hydrometallurgy, 2012, vol. 129, pp. 67-73.

    Google Scholar 

  6. S. Hay, and W. Rankin: Miner. Eng., 1994, vol. 7, pp. 985-1001.

    Article  Google Scholar 

  7. J.G. Machado, F.A. Brehm, C.A.M. Moraes, C.A. Dos Santos, A.C.F. Vilela, and J.B.M. Da Cunha: J. Hazard. Mater., 2006, vol. 136, pp. 953-60.

    Article  Google Scholar 

  8. T. Mansfeldt, and R. Dohrmann: Environ. Sci. Technol., 2004, vol. 38, pp. 5977-84.

    Article  Google Scholar 

  9. J. Vereš, Š. Jakabský, M. Lovás, and S. Hredzák: Acta Montan. Slovaca, 2010, vol. 15, pp. 204-11.

    Google Scholar 

  10. M.V. Cantarino, C. de Carvalho Filho, and M.B. Mansur: Hydrometallurgy, 2012, vol. 111, pp. 124–28.

  11. Z. Wang, D. Pinson, S. Chew, B.J. Monaghan, H. Rogers, and G. Zhang: ISIJ International, 2016, vol. 56, pp. 505-12.

    Article  Google Scholar 

  12. R.A. Shawabkeh: Hydrometallurgy, 2010, vol. 104, pp. 61-65.

    Article  Google Scholar 

  13. T. Havlík, B.V. e Souza, A.M. Bernardes, I.A.H. Schneider, and A. Miškufová: J. Hazard. Mater., 2006, vol. 135, pp. 311–18.

  14. V. Montenegro, P. Oustadakis, P.E. Tsakiridis, and S. Agatzini-Leonardou: Metall. Mater. Trans. B, 2013, vol. 44, pp. 1058-69.

    Article  Google Scholar 

  15. Š. Langová, J. Leško, and D. Matýsek: Hydrometallurgy, 2009, vol. 95, pp. 179-82.

    Article  Google Scholar 

  16. H. Shalchian, A. Rafsanjani-Abbasi, J. Vahdati-Khaki, and A. Babakhani: Metall. Mater. Trans. B, 2014, vol. 46, pp. 38-47.

    Google Scholar 

  17. P. Oustadakis, P. Tsakiridis, A. Katsiapi, and S. Agatzini-Leonardou: J. Hazard. Mater., 2010, vol. 179, pp. 1-7.

    Article  Google Scholar 

  18. J.M. Steer, and A.J. Griffiths: Hydrometallurgy, 2013, vol. 140, pp. 34-41.

    Article  Google Scholar 

  19. J. Wang, Z. Wang, Z. Zhang, and G. Zhang: Metall. Mater. Trans. B, 2019, vol. 50, pp. 480–90 .

    Article  Google Scholar 

  20. Y. Zhu, Z. Wu, and S.-T. Yang: Process Biochem., 2002, vol. 38, pp. 657-66.

    Article  Google Scholar 

  21. M. Dwidar, J.Y. Park, R.J. Mitchell, and B.I. Sang: Sci. World J., 2012, vol. 2012, p. 471417.

    Article  Google Scholar 

  22. M. Sjöblom, L. Matsakas, P. Christakopoulos, and U. Rova: Ind. Crops Prod., 2015, vol. 74, pp. 535-44.

    Article  Google Scholar 

  23. X. Liu, and S.T. Yang: Process Biochem., 2005, vol. 41, pp. 801-08.

    Article  Google Scholar 

  24. M. Liong, and N. Shah: J. Appl. Microbiol., 2005, vol. 99, pp. 783-93.

    Article  Google Scholar 

  25. N. Ren, D. Zhao, X. Chen, and J. Li: Science in China Series B: Chemistry, 2002, vol. 45, pp. 319-27.

    Article  Google Scholar 

  26. Š. Langová, and D. Matýsek: Hydrometallurgy, 2010, vol. 101, pp. 171-73.

    Article  Google Scholar 

  27. D. Baik, and D. Fray: Min. Process. Extr. Metall., 2000, vol. 109, pp. 121-28.

    Article  Google Scholar 

  28. J. Wang, Z. Wang, Z. Zhang, and G. Zhang: J. Clean. Prod., 2019, vol. 209, pp. 1-9.

    Article  Google Scholar 

  29. A. Agrawal, and K. Sahu: J. Hazard. Mater., 2009, vol. 171, pp. 61-75.

    Article  Google Scholar 

  30. W. Kladnig: J. Iron Steel Res. Int., 2008, vol. 15, pp. 1-6.

    Article  Google Scholar 

  31. D. Megias-Alguacil, E. Tervoort, C. Cattin, and L.J. Gauckler: J. Colloid Interface Sci., 2011, vol. 353, pp. 512-18.

    Article  Google Scholar 

  32. T. Allen, and R. Patel: J. Colloid Interface Sci., 1971, vol. 35, pp. 647-55.

    Article  Google Scholar 

  33. A. Oxley, N. Sirvanci, and S. Purkiss: Metalurgija, 2007, vol. 13, pp. 5-10.

    Google Scholar 

  34. J.F. Adams, and V.G. Papangelakis: Can. Metall. Q., 2000, vol. 39, pp. 421-32.

    Article  Google Scholar 

  35. N.R. Nengovhela, C.A. Strydom, J.P. Maree, S. Oosthuizen, and D.J. Theron: Water S.A, 2007, vol. 33, pp. 741–47.

  36. Z. Yan, Z. Wang, X. Wang, H. Liu, and J. Qiu: Trans. Nonferrous Met. Soc. China, 2015, vol. 25, pp. 3490−97.

    Article  Google Scholar 

Download references

Acknowledgments

The first author wishes to gratefully acknowledge the scholarship support from the University of Wollongong (IPTA and UPA scholarships) and the China Scholarship Council (CSC). The BOS filter cake sample used in this work was supplied by BlueScope. The authors are also indebted to Dr. Linda Tie from UOW for help in ICP-OES operation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jingxiu Wang or Zhe Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted November 11, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Wang, Z., Zhang, Z. et al. Effect of Addition of Other Acids into Butyric Acid on Selective Leaching of Zinc from Basic Oxygen Steelmaking Filter Cake. Metall Mater Trans B 50, 1378–1386 (2019). https://doi.org/10.1007/s11663-019-01563-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-019-01563-7

Navigation