Skip to main content
Log in

Inclusion Characterization and Formation Mechanisms in Spring Steel Deoxidized by Silicon

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

To elucidate the mechanism of formation of inclusions in microalloyed spring steel deoxidized by Si, their number, morphology, and chemical compositions were analyzed by electron probe X-ray microanalysis. Wavelength-dispersive spectrometry and Monte Carlo simulation were used to confirm the existence of inherent FeO in the inclusions. Additions of Nb and V did not have an observable influence on the formation of inclusions. Based on the major chemical compositions, the inclusions in spring steel were classified into four types: CaO-SiO2, Al2O3-SiO2, Al2O3-SiO2-CaO, and MnS. Most CaO-SiO2 inclusions were around 10 μm in diameter, with their composition close to that of the refining slag and liquidus temperatures all below 1400 °C. The Al2O3-SiO2 inclusions were mainly attributed to deoxidization products. They were usually multiphased with liquidus temperatures higher than 1500 °C and smaller than 10 μm in diameter. Most Al2O3-SiO2-CaO inclusions with high Al2O3 and SiO2 contents originated from the coalescence of CaO-SiO2 and Al2O3-SiO2 inclusions; those with high CaO and SiO2 contents were considered to form via reduction of CaO-SiO2 inclusions by Al dissolved in the steel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Q.Y. Wang, J.Y. Berard, S. Rathery and C. Bathias: Fatigue Fract. Eng. Mater. Struct., 1999, vol. 22, pp. 673-7.

    Article  Google Scholar 

  2. D. McClaflin and A. Fatemi: Int. J. Fatigue, 2004, vol. 26, pp. 773-84.

    Article  Google Scholar 

  3. G. Farrahi, J. Lebrijn and D. Couratin: Fatigue Fract. Eng. Mater. Struct., 1995, vol. 18, pp. 211-20.

    Article  Google Scholar 

  4. B. Pyttel, D. Schwerdt and C. Berger: Int. J. Fatigue, 2011, vol. 33, pp. 49-58.

    Article  Google Scholar 

  5. P. Ganesh, R. Sundar, H. Kumar, R. Kaul, K. Ranganathan, P. Hedaoo, G. Raghavendra, S.A. Kumar, P. Tiwari, D.C. Nagpure, K.S. Bindra, L.M. Kukreja and S.M. Oak: Mater. Des., 2014, vol. 54, pp. 734-41.

    Article  Google Scholar 

  6. H. Tashiro, S. Nishida, T. Tarui, S. Ohashi, S. Sasaki and K. Nakamura, A. Yoshie and H. Demachi: Nippon Steel Technical Report, 1999, vol. 80, pp. 4-5.

    Google Scholar 

  7. M. Kimura: Research and Development Kobe, 2006, vol. 56, p. 1.

    Google Scholar 

  8. C.W. Anderson and S.G. Coles: Extremes, 2002, vol. 5, pp. 237-52.

    Article  Google Scholar 

  9. Y. Murakam, T. Nomoto and T. Ueda: Fatigue Fract. Eng. Mater. Struct., 1999, vol. 22, pp. 581-90.

    Article  Google Scholar 

  10. Y. Murakami: JSME Int. J. Ser. A, 1989, vol. 32, pp. 167–80.

    Google Scholar 

  11. Y. Akiniwa, S.S. Tschegg, H. Mayer, M. Wakita and K. Tanaka: Int. J. Fatigue, 2008, vol. 30, pp. 2057-63.

    Article  Google Scholar 

  12. Y. Akiniwa, S.S. Tschegg and S. Konuma: Int. J. Fatigue, 1989, vol. 11, pp. 291-8.

    Article  Google Scholar 

  13. J. Zhang, S. Li, Z. Yang, G. Li, W. Hui and Y. Weng: Int. J. Fatigue, 2007, vol. 29, pp. 765-71.

    Article  Google Scholar 

  14. Z. Yang, J. Zhang, S. Li, G. Li, Q. Wang, W. Hui and Y. Weng: Mater. Sci. Eng. A, 2006, vol. 427, pp. 167-74.

    Article  Google Scholar 

  15. W.J. Hui, H. Dong and S.L. Chen: Special Steel, 1998, vol. 6, p. 1.

    Google Scholar 

  16. J. Kawahara, K. Tanabe, T. Banno and M. Yoshida: Wire J. Int. (USA), 1992, vol. 25, pp. 55-61.

    Google Scholar 

  17. Z. Yang, G. Yao, G. Li, S. Li, Z. Chu, W. Hui, H. Dong and Y. Weng: Int. J. Fatigue, 2004, vol. 26, pp. 959-66.

    Article  Google Scholar 

  18. H. Tozawa, Y. Kato, K. Sorimachi and T. Nakanishi: ISIJ Int., 1999, vol. 39, pp. 426-34.

    Article  Google Scholar 

  19. R. Tsujino, K. Mukai, W. Yamada, M. Zeze and S. Mizoguchi: Tetsu-to-Hagané, 1999, vol. 85, pp. 362-7.

    Article  Google Scholar 

  20. H. Ohta and H. Suito: ISIJ Int., 1996, vol. 36, pp. 983-90.

    Article  Google Scholar 

  21. K. Lee, J.M. Park, J.Y. Chung, S.H. Choi and S.B. Ahn: Rev. Métall., 1996, vol. 93, pp. 503-9.

    Article  Google Scholar 

  22. J.H. Park and H. Todoroki: ISIJ Int., 2010, vol. 50, pp. 1333-46.

    Article  Google Scholar 

  23. K. Beskow, J. Jia, C. Lupis and S.C. Du: Ironmak. Steelmak., 2002, vol. 29, pp. 427-35.

    Article  Google Scholar 

  24. V. Brabie: Steel Res. Int., 1997, vol. 68, pp. 54-60.

    Article  Google Scholar 

  25. V. Brabie: ISIJ Int., 1996, vol. 36, pp. S109-12.

    Article  Google Scholar 

  26. H. Yang, J. Ye, X. Wu, Y. Peng, Y. Fang and X. Zhao: ISIJ Int., 2016, vol. 56, pp. 108-15.

    Article  Google Scholar 

  27. J.T. Ju, Z.L. Lv and S.F. Yang: Met. Min. Ind., 2014, vol. 6, pp. 18-24.

    Google Scholar 

  28. K.Y. Lee, J.Y. Lee and D.R. Kim: Mater. Sci. Eng., 1984, vol. 67, pp. 213-20.

    Article  Google Scholar 

  29. S. Nishijima, E. Suzuki, A. Morii, T. Obata, K. Uchibori, Y. Nikura, K. Nisawa, J. Koarai and Y. Itoh: Trans. Jpn. Soc. Spr. Eng., 1986, vol. 1986, pp. 113-38.

    Google Scholar 

  30. H. Suito and R. Inoue: ISIJ Int., 1996, vol. 36, pp. 528-36.

    Article  Google Scholar 

  31. A.B. Stepanov, A.I. Zaitsev, B.A. Sarychev, A.Yu. Dzyuba and A.V. Koldaev: Metallurgist, 2016, vol. 59, pp. 917-22.

    Article  Google Scholar 

  32. Z.B. Li and Z.L. Xue: Iron and Steel, 1999, vol. 34, pp. 20-3.

    Google Scholar 

  33. G. Du and H. Guo: Spec. Steel, 2016, vol. 37, pp. 18-22.

    Google Scholar 

  34. K. Wang, M. Jiang, X. Wang, Y. Wang, H. Zhao and Z. Cao: Metall. Mater. Trans. B, 2015, vol. 46, pp. 2198-207.

    Article  Google Scholar 

  35. H. Fredriksson and Ö. Hammar: Metall. Trans. B, 1980, vol. 11, pp. 383-408.

    Article  Google Scholar 

  36. S. Choudhary: J. Mater. Process, 2012, vol. 27, pp. 925-9.

    Article  Google Scholar 

  37. S. Choudhary, S. Chandra and A. Ghosh: Metall. Mater. Trans. B, 2005, vol. 36, pp. 59-66.

    Article  Google Scholar 

  38. B. Koroušić: Steel Res., 1991, vol. 62, pp. 285-8.

    Article  Google Scholar 

  39. H. Ohta and H. Suito: Metall. Mater. Trans. B, 1996, vol. 27, pp. 943-53.

    Article  Google Scholar 

  40. S. Maeda, T. Soejima and T. Saito, 72nd Steelmaking Conference Proceedings, 1989, Iron and Steel Society, Warrendale, PA, pp. 379-85.

    Google Scholar 

  41. S.H. Chen, M. Jiang, X.F. He and X.H. Wang: Int. J. Miner. Metall. Mater., 2012, vol. 19, pp. 490-8.

    Article  Google Scholar 

  42. X.F. Cai, Y.P. Bao, L. Lin and C. Gu: Steel Res. Int., 2016, vol. 87, pp. 1168-78.

    Article  Google Scholar 

  43. K. Wang, M. Jiang, X. Wang, Y. Wang, H. Zhao and Z. Cao: Metall. Mater. Trans. B, 2016, vol. 47, pp. 282-90.

    Article  Google Scholar 

  44. J. Stewart and D. Williams: Corros. Sci., 1992, vol. 33, pp. 457–63, 465–74.

  45. M. Tohjoh, I. Muto, A. Chiba, Y. Sugawara and N. Hara: ECS Trans., 2014, vol. 58, pp. 39-45.

    Article  Google Scholar 

  46. W. Roberts, B. Lehtinen and K. Easterling: Acta Metall., 1976, vol. 24, pp. 745-58.

    Article  Google Scholar 

  47. Kluken, A.O., Ø. Grong and J. Hjelen: Mater. Sci. Technol., 1988, vol. 4, pp. 649-54.

    Article  Google Scholar 

  48. L. Wang and C. Beckermann: Metall. Mater. Trans. B, 2006, vol. 37, pp. 571-88.

    Article  Google Scholar 

  49. R. Neiser, M. Smith and R. Dykhuizen: J. Therm. Spray Technol., 1998, vol. 7, pp. 537-45.

    Article  Google Scholar 

  50. D.C. Hilty and W. Crafts: J. Met., 1950, vol. 2, pp. 414-24.

    Google Scholar 

  51. D.C. Hilty and W. Crafts: J. Met., 1950, vol. 2, pp. 425-36.

    Google Scholar 

  52. Y. Kawashita and H. Suito: ISIJ Int., 1995, vol. 35, pp. 1459-67.

    Article  Google Scholar 

  53. W. Choi, H. Matsuura and F. Tsukihashi: ISIJ Int., 2011, vol. 51, pp. 1951-6.

    Article  Google Scholar 

  54. Y. Bi, A.V. Karasev and P. Jönsson: ISIJ Int., 2013, vol. 53, pp. 2099-109.

    Article  Google Scholar 

  55. H. Doostmohammadi, A. Karasev and P. Jönsson: Steel Res. Int., 2010, vol. 81, pp. 398-406.

    Article  Google Scholar 

  56. T. Gram: PhD thesis. KTH Royal Institute of Technology, Sweden, 2015.

  57. J.H. Qi, C.W. Yang, W.J. Zhu, T. Qu, Y. Liu, Y.Ji: Iron & Steel, 2013, vol. 48, pp. 79-83.

    Google Scholar 

  58. W. Yang, X.G. Yang, L.F. Zhang, X.F. Liu: Steelmaking, 2013, vol. 6, pp. 71-8.

    Google Scholar 

  59. Chang, Z. Wu, R. Shiue, C. Chang: Mater. Lett., 2007, vol. 61, pp. 842-5.

    Article  Google Scholar 

  60. S.T. Lindsay, M.K. James, E.J. Bunce, S.M. Imber, H. Korth, A. Martindale, T.K. Yeoman: Planet. Space Sci., 2016, vol. 125, pp. 72-9.

    Article  Google Scholar 

  61. S. Kimura, K. Nakajima and S. Mizoguchi: Metall. Mater. Trans. B, 2001, vol. 32, pp. 79-85.

    Article  Google Scholar 

  62. L. Zhang and B. Thomas: Metall. Mater. Trans. B, 2006, vol. 37, pp. 733-61.

    Article  Google Scholar 

  63. M. Faraji, D. Wilcox, R. Thackray, A. Howe, I. Todd and P. Tsakiropoulos: Metall. Mater. Trans. B, 2015, vol. 46, pp. 2490-502.

    Article  Google Scholar 

  64. M. Ende, M. Guo, E. Zinngrebe, R. Dekkers, J. Proost, B. Blanpain and P. Wollants: Ironmak. Steelmak., 2009, vol. 36, pp. 201-8.

    Article  Google Scholar 

  65. L. Chen, A. Malfliet, P. Jones, B. Blanpain and M. Guo: Ceram. Int., 2016, vol. 42, pp. 743-51.

    Article  Google Scholar 

  66. S.M. Huang, J.L. Xue and Z.G. Wang: Proceedings 8th International Symposium on High-Temperature Metallurgical Processing, J.-Y. Hwang, T. Jiang, M.W. Kennedy, O. Yucel, P. Pistorius, V. Seshadri, B. Zhao, D. Gregurek and E. Keskinkilic, eds., The Minerals, Metals & Materials Series, Springer International Publishing, pp. 679–88, 2017.

  67. A. Ikesue, H. Yamamoto, H. Shikano and K. Hiragushi: Advances in Refractories Technology. Proceedings of International Forum on Advances in Refractories Technology, R.E. Fisher, ed., American Ceramics Society, Westerville, OH, 1989, pp. 464–88.

  68. X. Chen, C. Shi, H. Guo, F. Wang, H. Ren and D. Feng: Metall. Mater. Trans. B, 2012, vol. 43, pp. 1596-1607.

    Article  Google Scholar 

  69. C.B. Shi, X.C. Chen, H.J. Guo, Z.J. Zhu and X.L. Sun: Metall. Mater. Trans. B, 2013, vol. 44, pp. 378-89.

    Article  Google Scholar 

  70. Drouin, A.R. Couture, D. Joly, X. Tastet, V. Aimez, R. Gauvin: Scanning, 2007, vol. 29, pp. 92-101.

    Article  Google Scholar 

  71. C.W. Bale, E. Bélisle, P. Chartrand, S. Decterov, G. Eriksson, A. Gheribi, K. Hack, I.H. Jung, Y.B. Kang, J. Melançon: Calphad, 2016, vol. 54, pp. 35-53.

    Article  Google Scholar 

  72. M. Allibert, H. Gaye, J. Geiseler, D. Janke, B.J. Keene, D. Kirner, M. Kowalski, J. Lehmann, K.C. Mills and D. Neuschütz, Slag Atlas, 2nd ed., Verlag Stahleisen GmbH, Düsseldorf, 1995, p. 160.

    Google Scholar 

  73. W. Yang, C.B. Guo, L.F. Zhang, H.T. Ling and C. Li: Metall. Mater. Trans. B, 2017, vol. 48, pp. 2717-30.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Australian Research Council and Baosteel Australia Research and Development Centre. The University of Queensland International Research Tuition Award and China Scholarship Council provided scholarships for Mr Sha Lyu. The Australian Microscopy & Microanalysis Research Facility is thanked for providing characterization facilities. Technical supports for the EPMA facility from Mr. Ron Rasch and Ms. Ying Yu of the Centre for Microscopy and Microanalysis at the University of Queensland are gratefully acknowledged. We thank Kathryn Sole, PhD, from Edanz Group (www.edanzediting.com/ac) for editing a draft of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sha Lyu.

Additional information

Manuscript submitted April 18, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lyu, S., Ma, X., Huang, Z. et al. Inclusion Characterization and Formation Mechanisms in Spring Steel Deoxidized by Silicon. Metall Mater Trans B 50, 732–747 (2019). https://doi.org/10.1007/s11663-019-01505-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-019-01505-3

Navigation