Skip to main content
Log in

Formation Mechanism of Al2O3-Containing Inclusions in Al-Deoxidized Spring Steel

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The source, characteristics, and mechanism of Al2O3-containing inclusions in Al-deoxidized spring steel were investigated using electron-probe X-ray microanalysis (EPMA). Spring samples were collected during vacuum degassing (VD) refining, in a tundish ladle, and after hot rolling, respectively. Based on primary inclusion components, seven types of inclusions were observed through the manufacturing process: Al2O3, Al2O3-SiO2, Al2O3-CaO, Al2O3-MgO, Al2O3-MgO-CaO, Al2O3-SiO2-MnO, and Al2O3-SiO2-CaO. The Al2O3 and Al2O3-SiO2 inclusions were mainly attributed to deoxidization products, less than 15 μm in diameter and with liquidus temperatures exceeding 1600 °C. For Al2O3-CaO inclusions, which were considered to be formed by the reduction of entrapped slag by Al dissolved in the steel, the Al2O3/CaO ratio obviously decreased with the increase of inclusion sizes. Most Al2O3-SiO2-CaO inclusions were less than 15 μm in diameter, with their composition close to that of the refining slag and a liquidus temperature near 1500 °C. The Al2O3-MgO and Al2O3-SiO2-MnO inclusions originated from inherent reactions between dissolved [Al], [Si], [Mn], [Mg], and [O] in the steel. Al2O3-MgO-CaO inclusions resulted from coalescence between Al2O3-MgO and Al2O3-CaO inclusions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Notes

  1. LECO is a trademark of LECO Corporation, St. Joseph, MI.

References

  1. R. Sharp and D. Crolla: Vehicle Syst. Dyn., 1987, vol. 16, pp. 167–92.

    Article  Google Scholar 

  2. D. Prasad and H. Kytömaa: Int. J. Multiph. Flow, 1995, vol. 21, pp. 775–85.

    Article  CAS  Google Scholar 

  3. T. Yamamoto, R. Kobayashi, T. Ozone, and M. Kurimoto: J. Heat Treat., 1984, vol. 3, pp. 220–27.

    Article  CAS  Google Scholar 

  4. R. Batson and J. Bradley: Proc. Inst. Mech. Eng., 1931, vol. 120, pp. 301–32.

    Article  Google Scholar 

  5. S.K. Das, N. Mukhopadhyay, B.R. Kumar, and D. Bhattacharya: Eng. Fail. Anal., 2007, vol. 14, pp. 158–63.

    Article  Google Scholar 

  6. J. Lankford: Int. Met. Rev., 1977, vol. 22, pp. 221–28.

    Article  CAS  Google Scholar 

  7. Z. Szklarska-Smialowska: Corrosion, 1972, vol. 28, pp. 388–96.

    Article  CAS  Google Scholar 

  8. J.S. Byun, J.H. Shim, Y. Cho, and D. Lee: Acta Mater., 2003, vol. 51, pp. 1593–1606.

    Article  CAS  Google Scholar 

  9. Q.Y. Wang, J.Y. Berard, A. Dubarre, G. Baudry, S. Rathery, and C. Bathias: Fatig. Fract. Eng. Mater. Struct., 1999, vol. 22, pp. 667–72.

    Article  CAS  Google Scholar 

  10. K. Tanaka and T. Mura: Metall. Trans. A, 1982, vol. 13A, pp. 117–23.

    Article  CAS  Google Scholar 

  11. J. Zhang, S. Li, Z. Yang, G. Li, W. Hui, and Y. Weng: Int. J. Fatigue, 2007, vol. 29, pp. 765–71.

    Article  CAS  Google Scholar 

  12. Z. Lei, Y. Hong, J. Xie, C. Sun, and A. Zhao: Mater. Sci. Eng. A, 2012, vol. 558, pp. 234–41.

    Article  CAS  Google Scholar 

  13. P.J. Laz and B.M. Hillberry: Int. J. Fatigue, 1998, vol. 20, pp. 263–70.

    Article  CAS  Google Scholar 

  14. T. Kunio, M. Shimizu, K. Yamada, K. Sakura, and T. Yamamoto: Int. J. Fatigue, 1981, vol. 17, pp. 111–19.

    CAS  Google Scholar 

  15. J. Laizhu, C. Kun, and H. Hänninen: J. Mater. Process. Technol., 1996, vol. 58, pp. 160–65.

    Article  Google Scholar 

  16. G. Ye, P. Jönsson, and T. Lund: ISIJ Int., 1996, vol. 36, pp. S105–S108.

    Article  Google Scholar 

  17. H. Itoh, M. Hino, S. Ban.: Hagané, 1998, 84, 85–90.

    Article  CAS  Google Scholar 

  18. H. Suito, H. Inoue, and R. Inoue: ISIJ Int., 1991, vol. 31, pp. 1381–88.

    Article  CAS  Google Scholar 

  19. Y. Chen, T.M. Chen, X.H. Wang, and J. Chen: Adv. Mater. Res., 2011, vol. 284, pp. 1060–66.

    Article  Google Scholar 

  20. X. Su, S.Q. Guo, M.R. Qiao, H.Y. Zheng, and L.B. Qin: Def. Diffus. Forum, 2018, vol. 382, pp. 80–85.

    Article  Google Scholar 

  21. C. Bertrand, J. Molinero, S. Landa, R. Elvira, M. Wild, G. Barthold, P. Valentin, and H. Schifferl: Ironmak. Steelmak., 2003, vol. 30, pp. 165–69.

    Article  CAS  Google Scholar 

  22. T. Abe, Y. Furuya, and S. Matsuoka: Fatig. Fract. Eng. Mater. Struct., 2004, vol. 27, pp. 159–67.

    Article  CAS  Google Scholar 

  23. Q. Wang, C. Bathias, N. Kawagoishi, and Q. Chen: Int. J. Fatig., 2002, vol. 24, pp. 1269–74.

    Article  CAS  Google Scholar 

  24. H. Itoga, K. Tokaji, M. Nakajima, and H.N. Ko: Int. J. Fatig., 2003, vol. 25, pp. 379–85.

    Article  CAS  Google Scholar 

  25. S.K. Choudhary and A. Ghosh: ISIJ Int., 2008, vol. 48, pp. 1552–59.

    Article  CAS  Google Scholar 

  26. S.M. Wang, Y.P. Huo, and S.M. Wang. Adv. Mater. Res., 2012, vol. 535, pp. 706–10.

    Google Scholar 

  27. J. Guo, S.S. Cheng, H.J. Guo, and Y.G. Mei: Int. J. Min. Met. Mater., 2018, vol. 25, pp. 280–87.

    Article  CAS  Google Scholar 

  28. N. Eid and P. Thomason: Acta Mater., 1979, vol. 27, pp. 1239–49.

    Article  CAS  Google Scholar 

  29. B. Coletti, B. Blanpain, S. Vantilt, and S. Sridhar: Metall. Mater. Trans. B, 2003, vol. 34B, pp. 533–38.

    Article  CAS  Google Scholar 

  30. J. Wikström, K. Nakajima, H. Shibata, A. Tilliander, and P. Jönsson: Ironmak. Steelmak., 2008, vol. 35, pp. 589–99.

    Article  Google Scholar 

  31. Y. Kang, F. Li, K. Morita, and D. Sichen: Steel. Res. Int., 2006, vol. 77, pp. 785–92.

    Article  CAS  Google Scholar 

  32. S. Yang, Q. Wang, L. Zhang, J. Li, and K. Peaslee: Metall. Mater. Trans. B, 2012, vol. 43B, pp. 731–50.

    Article  Google Scholar 

  33. L. Holappa, M. Hämäläinen, M. Liukkonen, and M. Lind: Ironmak. Steelmak., 2003, vol. 30, pp. 111–15.

    Article  CAS  Google Scholar 

  34. M. Jiang, X. Wang, and W. Wang: Steel. Res. Int., 2010, vol. 81, pp. 759–65.

    Article  CAS  Google Scholar 

  35. M. Jiang, X. Wang, B. Chen, and W. Wang: ISIJ Int., 2008, vol. 48, pp. 885–90.

    Article  CAS  Google Scholar 

  36. M. Jiang, X. Wang, B. Chen, and W. Wang: ISIJ Int., 2010, vol. 50, pp. 95–104.

    Article  CAS  Google Scholar 

  37. M. Allibert, H. Gaye, J. Geiseler, D. Janke, B.J. Keene, D. Kirner, M. Kowalski, J. Lehmann, K.C. Mills, and D. Neuschütz: Slag Atlas, 2nd ed., Verlag Stahleisen GmbH, Düsseldorf, 1995, pp. 104, 116, 160.

  38. S. Kimura, K. Nakajima, and S. Mizoguchi: Metall. Mater. Trans. B, 2001, vol. 32B, pp. 79–85.

    Article  CAS  Google Scholar 

  39. L. Zhang and B.G. Thomas: Metall. Mater. Trans. B, 2006, vol. 37B, pp. 733–61.

    Article  CAS  Google Scholar 

  40. M. Faraji, D.P. Wilcox, R. Thackray, A.A. Howe, I. Todd, and P. Tsakiropoulos: Metall. Mater. Trans. B, 2015, vol. 46B, pp. 2490–2502.

    Article  Google Scholar 

  41. M.A.V. Ende, M. Guo, E. Zinngrebe, R. Dekkers, J. Proost, B. Blanpain, and P. Wollants: Ironmak. Steelmak., 2009, vol. 36, pp. 201–08.

    Article  Google Scholar 

  42. E. Steinmetz, H.U. Linderberg, W. Morsdorf, and P. Hammerschmid: Arch. Eisenhuttenwes., 1977, vol. 48, pp. 569–74.

    CAS  Google Scholar 

  43. K. Mills, A. Fox, Z. Li, and R. Thackray: Ironmak. Steelmak., 2005, vol. 32, pp. 26–34.

    Article  CAS  Google Scholar 

  44. K. Wang, M. Jiang, X. Wang, Y. Wang, H. Zhao, and Z. Cao: Metall. Mater. Trans. B, 2015, vol. 46B, pp. 2198–2207.

    Article  Google Scholar 

  45. C. Bale, E. Bélisle, P. Chartrand, S. Decterov, G. Eriksson, A. Gheribi, K. Hack, I.H. Jung, Y.B. Kang, and J. Melançon: Calphad, 2016, vol. 54, pp. 35–53.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Australian Research Council and Baosteel Australia Research and Development Centre. The University of Queensland International Research Tuition Award and China Scholarship Council provided scholarships for Mr. Sha Lyu. The Australian Microscopy & Microanalysis Research Facility is acknowledged for providing characterization facilities. Technical support for the EPMA facility from Mr. Ron Rasch and Ms. Ying Yu, Centre for Microscopy and Microanalysis, University of Queensland, is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaodong Ma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted January 25, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lyu, S., Ma, X., Huang, Z. et al. Formation Mechanism of Al2O3-Containing Inclusions in Al-Deoxidized Spring Steel. Metall Mater Trans B 50, 2205–2220 (2019). https://doi.org/10.1007/s11663-019-01644-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-019-01644-7

Navigation