Skip to main content
Log in

Effect of a High Magnetic Field on γ′ Phase for Ni-Based Single Crystal Superalloy During Directional Solidification

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The effect of a high magnetic field on the γ′ phase of Ni-based single crystal superalloy during directional solidification is investigated experimentally. The results clearly indicate that the magnetic field significantly reduces the γ′ phase size. Further, the quenching experiment is carried out, and the results found that the length of mushy zone is obviously decreased under a high magnetic field. Based on both experimental results and nucleation mechanism, it is found that the decrease of γ′ phase size should be attributed to the fact that a high magnetic field causes the increase of temperature gradient in front of solid/liquid interface and leads to the increase of undercooling of γ′ phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M. McLean: Directionally Solidified Materials for High Temperature Service, The Metals Society, London, 1983, pp. 161–63.

    Google Scholar 

  2. T.T. Zuo, X. Yang, Peter K. Liaw, and Y. Zhang: Intermetallics., 2015, vol. 67, pp. 171–76.

    Article  Google Scholar 

  3. Y. Zhang, C.C. Koch, S.G. Ma, H. Zhang, and Y. Pan: Fabrication Routes. In High-Entropy Alloys: Fundamentals and Applications, Springer-Nature, 2016, pp. 151–79.

  4. T. Pollock and A.S. Argon: Acta. Metall. Mater., 1992, vol. 40, pp. 1–30.

    Article  Google Scholar 

  5. L. Nguyen, R.P. Shi, Y.Z. Wang, and M.D. Graef: Acta Mater., 2016, vol. 103, pp. 322–33.

    Article  Google Scholar 

  6. M. Durand-Charre: The Microstructure of Superalloys, CRC Press, Boca Raton, 1998.

    Google Scholar 

  7. P. Caron and T. Khan: Mater. Sci. Eng., 1983, vol. 61, pp. 173–84.

    Article  Google Scholar 

  8. L. Shui, S.G. Tian, T. Jin, and Z.Q. Hu: Mater. Sci. Eng. A, 2006, vol. 418, pp. 229–35.

    Article  Google Scholar 

  9. C.L. Brundidge, D. Vandrasek, B. Wang, and T.M. Pollock: Metall. Mater. Trans. A, 2012, vol. 43A, pp. 965–76.

    Article  Google Scholar 

  10. J. Zhang and L.H. Lou: J. Mater. Sci. Technol., 2007, vol. 23 pp. 289–99.

    Google Scholar 

  11. L. Liu, T.W. Huang, J. Zhang, and H.Z. Fu: Mater. Lett., 2007, vol. 61, pp. 227–30.

    Article  Google Scholar 

  12. X.B. Zhao, L. Liu, C.B. Yang, Y.F. Li, J. Zhang, Y.L. Li, and H.Z. Fu: J. Alloys Compd., 2011, vol. 509, pp. 9645–49.

    Article  Google Scholar 

  13. M Konter, E Kats, N Hofmann: in Superalloys, TM Pollock, RD Kissinger, RR Bowman, KA Green, M McLean, SL Olson, and JJ Schirra, eds., TMS, Warrendale, 2000, pp. 189–200.

    Google Scholar 

  14. F. Wang, D.X. Ma, Y.R. Mao, S. Bogner, and A. Bührig-Polaczck: Metall. Mater. Trans. B, 2016, vol. 47B, pp. 76–84.

    Article  Google Scholar 

  15. C. Vives and C. Perry: Int. J. Heat Mass Transf., 1987, vol. 30, pp. 479–96.

    Article  Google Scholar 

  16. Y.B. Zhong, P.W. Zhou, J.F. Zhou, H. Wang, L.J. Fan, L.C. Dong, T.X. Zheng, and W.W. Shen: Appl. Surf. Sci., 2014, vol. 309, pp. 278–84.

    Article  Google Scholar 

  17. P. Lehmann, R. Moreau, D. Camel, and R. Bolcato: J. Cryst. Growth, 1998, vol. 183, pp. 690–704.

    Article  Google Scholar 

  18. W.D. Xuan, Z.M. Ren, and C.J. Li: J. Alloys Compd., 2015, vol. 621, pp. 10–17.

    Article  Google Scholar 

  19. X. Li, Y. Fautrelle, and Z. M. Ren: Acta Mater. 2008, vol. 56, pp. 3146–61.

    Article  Google Scholar 

  20. W.V. Youdelis, and J.R. Cahoon: Can. J. Phys., 1970, vol. 48, pp. 805–8.

    Article  Google Scholar 

  21. X. Li, D. F. Du, A. Gagnoud, Z.M. Ren, Y. Fautrelle, K. Zaidat, and R. Moreau: Metall. Mater. Trans. A, 2014, vol. 45A, pp. 5584–600.

    Article  Google Scholar 

  22. W.D. Xuan, H. Liu, C.J. Li, Z.M. Ren, Y.B. Zhong, X. Li, and G.H. Cao: Metall. Mater. Trans. B, 2016, vol. 47B, pp.828–33.

    Article  Google Scholar 

  23. X. Li, Y. Fautrelle, A. Gagnoud, D. Du, J. Wang, Z. Ren, H. Nguyen-Thi, and N. Mangelinck-Noel: Acta Mater., 2014, vol. 64, pp. 367–81.

    Article  Google Scholar 

  24. X.P. Guo, H.Z. Fu, and J.H. Sun: Metall. Trans. A, 1997, vol. 28A, pp. 997–1009.

    Article  Google Scholar 

  25. J.M. Xiao: Alloy Phase and Its Transformation, The Chinese Metallurgical Publishing House, Beijing, 1987, pp. 233–35.

    Google Scholar 

  26. W.L. Ren, L. Lu, G.Z. Yuan, W.D. Xuan, Y.B. Zhong, J.B. Yu, and Z.M. Ren: Mater. Lett., 2013, vol. 100, pp. 223–6.

    Article  Google Scholar 

  27. W.D. Xuan, J. Lan, H. Liu, C.J. Li, J Wang, W.L. Ren, Y.B. Zhong, X. Li, and Z.M. Ren: Metall. Mater. Trans. A, 2017, vol. 48, pp. 3804–13.

    Article  Google Scholar 

  28. M Yamaguchi, Y Tanimoto (2006) Magneto-science. Springer Verlag, New York, pp. 15–17.

    Book  Google Scholar 

  29. J.P. Gu, C. Beckermann, and A.F. Giamei: Metall. Mater. Trans. A, 1997, vol. 28A, pp. 1533–42.

    Article  Google Scholar 

  30. F. Wang, D.X. Ma, J. Zhang, S. Bogner, and A. Bührig-Polaczck: J Mater Process Tech, 2014, vol. 214, pp. 3112–21.

    Article  Google Scholar 

  31. X.B. Zhao, L. Liu, Z.H. Yu, W.G. Zhang, J. Zhang, and H.Z. Fu: J. Mater. Sci., 2010, vol. 45, pp. 6101–7.

    Article  Google Scholar 

  32. M. D. Dupouy, D. Camel, and J. J. Favier: Acta Metall Mater, 1992, vol. 40, pp. 1791–801.

    Article  Google Scholar 

  33. S. Steinbach and L. Ratke: Metall. Mater. Trans. A, 2007, vol. 38A, pp. 1388–94.

    Article  Google Scholar 

  34. J. Hui, R. Tiwari, X. Wu, S.N. Tewari, and R. Trivedi: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 3499–510.

    Article  Google Scholar 

  35. W.J. Boettinger, F.S. Biancaniello, and S.R. Coriell: Metall. Mater. Trans. A, 1981, vol. 12A, pp. 321–27.

    Article  Google Scholar 

  36. P. Lehmann, R. Moreau, D. Camel, and R. Bolcato: Acta Mater., 1998, vol. 46, pp. 4067–79.

    Article  Google Scholar 

  37. P. Lehmann, R. Moreau, D. Camel, and R. Bolcato: J. Cryst. Growth, 1998, vol. 183, pp. 690–704.

    Article  Google Scholar 

  38. Y.Y. Khine and S. Walker: J. Cryst. Growth, 1998, vol. 183, pp. 150–58.

    Article  Google Scholar 

  39. P. Dolda, F.R. Szofranb, and K.W. Benz: J. Cryst. Growth, 2006, vol. 291, pp. 1–7.

    Article  Google Scholar 

  40. H. Yasuda, T. Yoshimoto, T. Mizuguchi, Y. Tamura, T. Nagira, and M.Yoshiya: ISIJ Int., 2007, vol. 47, pp. 612–18.

    Article  Google Scholar 

  41. G. Pottlacher, H. Hosaeus, B. Wilthan, E. Kaschnitb, and A. Seifter: Thermochim. Acta, 2002, vol. 382, pp. 255–67.

    Article  Google Scholar 

  42. M.D. Dupouy and D. Camel: J. Cryst. Growth, 1998, vol.183, pp. 469–89.

    Article  Google Scholar 

  43. T. Zhang, W.L. Ren, J.W. Dong, X. Li, Z.M. Ren, G.H. Cao, Y.B. Zhong, K. Deng, Z.S. Lei, and J.T. Guo: J. Alloys Compd., 2009, vol. 487, pp. 612–17.

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 51604172, U1560202) and the Major Program of National Natural Science Foundation of China (No. 51690162).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weidong Xuan.

Additional information

Manuscript submitted May 8, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xuan, W., Lan, J., Zhao, D. et al. Effect of a High Magnetic Field on γ′ Phase for Ni-Based Single Crystal Superalloy During Directional Solidification. Metall Mater Trans B 49, 1919–1924 (2018). https://doi.org/10.1007/s11663-018-1293-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-018-1293-9

Keywords

Navigation