Skip to main content
Log in

Phase Evolution and Thermal Expansion Behavior of a γ′ Precipitated Ni-Based Superalloy by Synchrotron X-Ray Diffraction

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

The phase evolution and thermal expansion behavior in superalloy during heating play an essential role in controlling the size and distribution of precipitates, as well as optimizing thermomechanical properties. Synchrotron X-ray diffraction is able to go through the interior of sample and can be carried out with in situ environment, and thus, it can obtain more statistics information in real time comparing with traditional methods, such as electron and optical microscopies. In this study, in situ heating synchrotron X-ray diffraction was carried out to study the phase evolution in a typical γ′ phase precipitation strengthened Ni-based superalloy, Waspaloy, from 29 to 1050 °C. The γ′, γ, M23C6 and MC phases, including their lattice parameters, misfits, dissolution behavior and thermal expansion coefficients, were mainly investigated. The γ′ phase and M23C6 carbides appeared obvious dissolution during heating and re-precipitated when the temperature dropped to room temperature. Combining with the microscopy results, we can indicate that the dissolution of M23C6 leads to the growth of grain and γ′ phase cannot be completely dissolved for the short holding time above the solution temperature. Besides, the coefficients of thermal expansions of all the phases are calculated and fitted as polynomials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. R.C. Reed, The Superalloys: Fundamentals and Applications (Cambridge University Press, Cambridge, 2008), pp. 25–30

    Google Scholar 

  2. T.M. Pollock, Nat. Mater. 15, 810 (2016)

    Article  Google Scholar 

  3. S. Antonov, M. Detrois, R.C. Helmink, S. Tin, J. Alloys Compd. 626, 76 (2015)

    Article  CAS  Google Scholar 

  4. N.R. Jaladurgam, H. Li, J. Kelleher, C. Persson, A. Steuwer, M.H. Colliander, Acta Mater. 183, 182 (2020)

    Article  CAS  Google Scholar 

  5. Y.T. Wu, C. Li, X.C. Xia, H.Y. Liang, Q.Q. Qi, Y.C. Liu, J. Mater. Sci. Technol. 67, 95 (2020)

    Article  Google Scholar 

  6. L.X. Li, X.F. Gong, C.S. Wang, Y.S. Wu, H.Y. Yu, H.J. Su, L.Z. Zhou, Acta Metall. Sin.-Engl. Lett. 34, 872 (2021)

    Article  Google Scholar 

  7. K. Arora, K. Kishida, K. Tanaka, H. Inui, Acta Mater. 138, 119 (2017)

    Article  CAS  Google Scholar 

  8. C. Schwalbe, A. Jacques, E. Galindo-Nava, C.N. Jones, C.M.F. Rae, J. Cormier, Mater. Sci. Eng. A 740, 184 (2019)

    Google Scholar 

  9. W.Z. Wang, H.U. Hong, I.S. Kim, B.G. Choi, H.W. Jeong, M.Y. Kim, C.Y. Jo, Mater. Sci. Eng. A 523, 242 (2009)

    Article  Google Scholar 

  10. C. Joseph, C. Persson, M.H. Colliander, Metall. Mater. Trans. A 51, 6137 (2020)

    Article  Google Scholar 

  11. N. Bano, M. Nganbe, J. Mater. Eng. Perform. 22, 952 (2013)

    Article  CAS  Google Scholar 

  12. H. Biermann, M. Strehler, H. Mughrabi, Metall. Mater. Trans. A 27, 1004 (1996)

    Article  Google Scholar 

  13. S. Raju, K. Sivasubramanian, R. Divakar, G. Panneerselvam, A. Banerjee, E. Mohandas, M.P. Antony, J. Nucl. Mater. 325, 18 (2004)

    Article  CAS  Google Scholar 

  14. R.G. Li, Q.G. Xie, Y.D. Wang, W.J. Liu, M. Wang, G. Wu, X. Li, M.H. Zhang, Z. Lu, C. Geng, T. Zhu, Proc. Natl. Acad. Sci. USA 115, 483 (2018)

    Article  CAS  Google Scholar 

  15. M. Zhang, L. Li, J. Ding, Q. Wu, Y.D. Wang, J. Almer, F. Guo, Y. Ren, Acta Mater. 141, 294 (2017)

    Article  CAS  Google Scholar 

  16. Z.Y. Ding, N.F. Zhang, L. Yu, W.Q. Lu, J.G. Li, Q.D. Hu, Acta Metall. Sin.-Engl. Lett. 34, 145 (2021)

    Article  CAS  Google Scholar 

  17. D.M. Collins, D.J. Crudden, E. Alabort, T. Connolley, R.C. Reed, Acta Mater. 94, 244 (2015)

    Article  CAS  Google Scholar 

  18. M.A. Abdullah, T.M.B. Albarody, A.R. Hussein, Nanotechnology 31, 285709 (2020)

    Article  CAS  Google Scholar 

  19. A.P. Hammersley, J. Appl. Cryst. 49, 646 (2016)

    Article  CAS  Google Scholar 

  20. N.R. Jaladurgam, H. Li, J. Kelleher, C. Persson, A. Steuwer, M.H. Colliander, Acta Mater. 183, 191 (2020)

    Article  Google Scholar 

  21. D.L. Davidson, R.G. Tryon, M. Oja, R. Matthews, K.S. Ravi Chandran, Metall. Mater. Trans. A 38, 2214 (2007)

    Article  Google Scholar 

  22. E. Balikci, D. Erdeniz, Metall. Mater. Trans. A 41, 1393 (2010)

    Article  Google Scholar 

  23. T. Ungár, L. Balogh, G. Ribárik, Metall. Mater. Trans. A 41, 1202 (2010)

    Article  Google Scholar 

  24. Y. Tomota, W. Gong, S. Harjo, T. Shinozaki, Scr. Mater. 133, 79 (2017)

    Article  CAS  Google Scholar 

  25. K. Oikawa, Y.H. Su, Y. Tomota, T. Kawasaki, T. Shinohara, T. Kai, K. Hiroi, S.Y. Zhang, J.D. Parker, H. Sato, Y. Kiyanagi, Phys. Procedia 88, 34 (2017)

    Article  CAS  Google Scholar 

  26. D. Texier, J.C. Stinville, M.P. Echlin, S. Pierret, P. Villechaise, T.M. Pollock, J. Cormier, Acta Mater. 165, 241 (2019)

    Article  CAS  Google Scholar 

  27. K. Prasad, R. Sarkar, K. Gopinath, Mater. Sci. Eng. A 654, 381 (2016)

    Article  CAS  Google Scholar 

  28. X. Chen, Z. Yao, J. Dong, H. Shen, Y. Wang, J. Alloys Compd. 735, 928 (2018)

    Article  CAS  Google Scholar 

  29. M.S.A. Karunaratne, S. Kyaw, A. Jones, R. Morrell, R.C. Thomson, J. Mater. Sci. 51, 4214 (2016)

    Article  Google Scholar 

  30. P.J. Hidnert, Res. Natl. Bur. Stand. 58, 90 (1957)

    Article  Google Scholar 

  31. G. Panneerselvam, S. Raju, R. Jose, K. Sivasubramanian, R. Divakar, E. Mohandas, M.P. Antony, Mater. Lett. 58, 219 (2004)

    Google Scholar 

  32. R. Jose, S. Raju, R. Divakar, E. Mohandas, G. Panneerselvam, M.P. Antony, K. Sivasubramanian, J. Nucl. Mater. 317, 58 (2003)

    Article  Google Scholar 

  33. Y.S. Wu, X.Z. Qin, L.Z. Zhou, Metall. Mater. Trans. A 49, 5658 (2018)

    Google Scholar 

  34. W. Buck, S. Rudtsch, Thermal Properties (Springer, Berlin, 2011), pp. 453–483

    Google Scholar 

  35. E. Balikci, A. Roman, R.A. Mirshams, Metall. Mater. Trans. A 30, 2805 (1999)

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (NSFC) (Grant Nos. 11805009 and 51921001) and the Fundamental Research Funds for the Central Universities (Grant No. 06111020).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qing Tan or Yandong Wang.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Available online at http://link.springer.com/journal/40195.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, Z., Tan, Q., Huang, H. et al. Phase Evolution and Thermal Expansion Behavior of a γ′ Precipitated Ni-Based Superalloy by Synchrotron X-Ray Diffraction. Acta Metall. Sin. (Engl. Lett.) 35, 93–102 (2022). https://doi.org/10.1007/s40195-021-01321-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-021-01321-2

Keywords

Navigation