Skip to main content
Log in

Mechanism and Control of Sulfide Inclusion Accumulation in CET Zone of 37Mn5 Round Billet

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

In the current study, the R/2 accumulation was found from the results of sulfide inclusion distribution across the diameter of 37Mn5 round billet using ASPEX. In order to reveal the mechanism and furthermore control this phenomenon, the distribution of sulfur content and the macrostructure of billet after etching were analyzed. The results showed that there was obvious segregation in the same position as sulfide inclusion accumulation, where the columnar-to-equiaxed transition (CET) took place. Therefore, the mechanism of sulfide inclusion accumulation in the CET zone was discussed on the basis of the mechanism of R/2 sulfur segregation. The interlaced and coarse dendrites in the CET zone blocked solute concentrated from select crystallization, thus caused sulfur segregation near R/2. Higher sulfur content and larger secondary dendrite arm spacing (SDAS) in the CET zone benefited the precipitation and growth of sulfide inclusions. The effect factors of CET position were discussed on the purpose that by proper cooling conditions, the morphology of solidification structure can be controlled, by which the element segregation can be modified; thereafter, the control of sulfide inclusion distribution in the billet can be realized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. M.C. Flemings: Metall. Trans., 1974, vol. 5, pp. 2121–34.

    Article  Google Scholar 

  2. Y. Ito, N. Masumitsu, and K. Matsubara: Trans. ISIJ, 1981, vol. 21, pp. 477–84.

    Article  Google Scholar 

  3. T. Matsumiya: Mater. Trans., 1992, vol. 33, pp. 783–94.

    Article  Google Scholar 

  4. S.K. Choudhary and A. Ghosh: ISIJ Int., 2009, vol. 49, pp. 1819–27.

    Article  Google Scholar 

  5. S.K. Choudhary and S. Ganguly: ISIJ Int., 2007, vol. 47, pp. 1759–66.

    Article  Google Scholar 

  6. M.O. El-Bealy: Ironmak. Steelmak., 2013, vol. 40, pp. 559–70.

    Article  Google Scholar 

  7. C. Beckermann: Int. Mater. Rev., 2002, vol. 47, pp. 243–61.

    Article  Google Scholar 

  8. M.C. Flemings: ISIJ Int., 2000, vol. 40, pp. 833–41.

    Article  Google Scholar 

  9. C. Jing, X. Wang, Z. Xu, F. Huang, and W. Wang: Foundry Technol., 2011, vol. 7, pp. 989–93.

    Google Scholar 

  10. S.K. Choudhary and A. Ghosh: ISIJ Int., 1994, vol. 34, pp. 338–45.

    Article  Google Scholar 

  11. M. Imagumbai: ISIJ Int., 1994, vol. 34, pp. 896–905.

    Article  Google Scholar 

  12. M. Imagumbai: ISIJ Int., 1994, vol. 34, pp. 992–96.

    Article  Google Scholar 

  13. H. Goto, K. Miyazawa, K. Yamaguchi, S. Ogibayashi, and K. Tanaka: ISIJ Int., 1994, vol. 34, pp. 414–19.

    Article  Google Scholar 

  14. H. Jacobi and K. Schwerdtfeger: Metall. Mater. Trans. B, 1976, vol. 7B, pp. 811–20.

    Article  Google Scholar 

  15. M.A. Taha: J. Mater. Sci. Lett., 1986, vol. 5, pp. 307–10.

    Article  Google Scholar 

  16. Z. Hou and G Cheng: Cont. Cast., 2011, S1, pp. 306–11.

    Google Scholar 

  17. W. Kurz, C. Bezencon, and M. Gäumann: Sci. Technol. Adv. Mater., 2001, vol. 2, pp. 185–91.

    Article  Google Scholar 

  18. J.A. Spittle: Int. Mater. Rev., 2006, vol. 51, pp. 247–69.

    Article  Google Scholar 

  19. G.J.W. Kor: Ironmak. Steelmak., 1982, vol. 9, pp. 244–51.

    Google Scholar 

  20. M.O. El-Bealy and B.G. Thomas: Metall. Mater. Trans. B, 1996, vol. 27B, pp. 689–93.

    Article  Google Scholar 

  21. K. Isobe: Tetsu-to-Hagane, 2012, vol. 98, pp. 405–14.

    Article  Google Scholar 

  22. T. Fujii, D.R. Poirier, and M.C. Flemings: Metall. Trans. B, 1979, vol. 10B, pp. 331–39.

    Article  Google Scholar 

  23. M. Wu and A. Ludwig: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 1613–31.

    Article  Google Scholar 

  24. H. Nguyenthi, G. Reinhart, N. Mangelincknoël, H. Jung, B. Billia, T. Schenk, J. Gastaldi, J. Härtwig, and J. Baruchel: Metall. Mater. Trans. A, 2007, vol. 38A, pp. 1458–64.

    Article  Google Scholar 

  25. G. Reinhart, N. Mangelinck-Noël, H. Nguyen-Thi, T. Schenk, J. Gastaldi, B. Billia, P. Pino, J. Härtwig, and J. Baruchel: Mater. Sci. Eng. A, 2005, vol. 6, pp. 384–388.

    Article  Google Scholar 

  26. G. Krauss: Metall. Mater. Trans. B, 2003, vol. 34B, pp. 781–92.

    Article  Google Scholar 

  27. J.D. Hunt: Mater. Sci. Eng. B, 1984, vol. 65, pp. 75–83.

    Article  Google Scholar 

  28. H. Shibata, S. Itoyama, Y. Kishimoto, S. Takeuchi, and H. Sekiguchi: ISIJ Int., 2006, vol. 46, pp. 921–30.

    Article  Google Scholar 

  29. G. Straffelini, L. Lutterotti, M. Tonolli, and M. Lestani: ISIJ Int., 2011, vol. 51, pp. 1448–53.

    Article  Google Scholar 

  30. J.C. Kim, J.J. Kim, J.Y. Choi, J.H. Choi, and S.K. Kim: La Metall. Ital., 2009, vol. 9, pp. 43–48.

    Google Scholar 

  31. S. Chaube, G. Tennyson, and A. Singh: Trans. Indian I. Metals, 2015, vol. 68, pp. 1207–13.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful for support from the National Science Foundation China (Grant Nos. 51504020, 51274034, 51404019), Beijing Key Laboratory of Green Recycling and Extraction of Metals (GREM), the Laboratory of Green Process Metallurgy and Modeling (GPM2), and the High Quality Steel Consortium (HQSC) at the School of Metallurgical and Ecological Engineering at University of Science and Technology Beijing (USTB), China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lifeng Zhang.

Additional information

Manuscript submitted August 9, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Zhang, L., Zhang, H. et al. Mechanism and Control of Sulfide Inclusion Accumulation in CET Zone of 37Mn5 Round Billet. Metall Mater Trans B 48, 1004–1013 (2017). https://doi.org/10.1007/s11663-016-0886-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-016-0886-4

Keywords

Navigation