Skip to main content
Log in

Effect of Sn Addition on the Evolution of Inclusions in Metallurgical Grade Silicon

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Inclusions in metallurgical grade silicon (MG-Si) can significantly degrade the quality and performance of silicon materials. Thus, it is essential to implement effective measures to control and minimize their presence. This study investigates the morphology, distribution, and microstructural evolution of inclusions in silicon by introducing varying amounts of Sn. The changes in Fe content at different positions in silicon ingots before and after Sn refining were examined. The study demonstrates that Sn refining can reduce the number of inclusions at the bottom of silicon ingots by up to 71.3 pct. The morphology of inclusions undergoes a transition from fine filaments and sporadic dots to block-like formations, ordered short rods, and dots. There is an upward migration of Fe in the vertical direction, leading to a reduction in Fe content at the bottom from 0.61 to 0.25 pct, representing a significant decrease of 59.03 pct. These findings suggest that the addition of Sn to silicon can effectively remove Fe impurities. Additionally, the incorporation of Sn refining enables a reduction in the formation of the Si7Al8Fe5 phase and enhances the selectivity of the organosilicon monomer synthesis process. Remarkably, the partial substitution of Ti by Al leads to the formation of the FeSi2Ti(Al) phase. However, Ca tends to concentrate in Sn and remains unaffected by the Sn content. These empirical findings offer experimental evidence for effectively reducing and controlling the quantity and morphology of inclusions in MG-Si, thereby significantly enhancing the quality of MG-Si production.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. C. Ramírez-Márquez, M.V. Otero, J.A. Vázquez-Castillo, M. Martín, and J.G. Segovia-Hernández: J. Clean. Prod., 2018, vol. 170, pp. 1579–93.

    Article  Google Scholar 

  2. W.O. Filtvedt, M. Javidi, A. Holt, M.C. Melaaen, E. Marstein, H. Tathgar, and P.A. Ramachandran: Sol. Energy Mater. Sol. Cells, 2010, vol. 94, pp. 1980–95.

    Article  CAS  Google Scholar 

  3. H. Sasaki, Y. Kobashi, T. Nagai, and M. Maeda: Adv. Mater. Sci. Eng., 2013, vol. 2013, pp. 1–8.

    Article  Google Scholar 

  4. H. Chen, K. Morita, X. Ma, Z. Chen, and Y. Wang: Sol. Energy Mater. Sol. Cells, 2019, vol. 203, 110169.

    Article  CAS  Google Scholar 

  5. X. Yang, W. Ma, G. Lv, K. Wei, D. Chen, S. Li, D. Zheng, and Z. Chen: Appl. Therm. Eng., 2016, vol. 106, pp. 890–98.

    Article  CAS  Google Scholar 

  6. S. Wen, Y. Tan, T. Yuan, P. Li, M. Forzan, D. Jiang, and F. Dughiero: Vacuum, 2017, vol. 145, pp. 251–57.

    Article  ADS  CAS  Google Scholar 

  7. X. Deng, L. Zhou, K. Wei, and W. Ma: Vacuum, 2023, vol. 207, 111581.

    Article  ADS  CAS  Google Scholar 

  8. A. Hoseinpur and J. Safarian: Vacuum, 2021, vol. 184, 109924.

    Article  ADS  CAS  Google Scholar 

  9. J. Wu, Y. Li, W. Ma, K. Liu, K. Wei, K. Xie, B. Yang, and Y. Dai: Silicon, 2014, vol. 6, pp. 79–85.

    Article  CAS  Google Scholar 

  10. J. Wu, D. Yang, M. Xu, W. Ma, Q. Zhou, Z. Xia, Y. Lei, K. Wei, S. Li, Z. Chen, and K. Xie: Sep. Purif. Rev., 2020, vol. 49, pp. 68–88.

    Article  CAS  Google Scholar 

  11. Z. Xia, J. Wu, W. Ma, Y. Lei, K. Wei, and Y. Dai: Sep. Purif. Technol., 2017, vol. 187, pp. 25–33.

    Article  CAS  Google Scholar 

  12. Q. He, J. Wen, G. Yang, F. Xu, M. Xu, Z. Chen, J. Wu, and W. Ma: Silicon, 2023, https://doi.org/10.1007/s12633-023-02453-z.

    Article  Google Scholar 

  13. Y. Lei, W. Ma, J. Wu, K. Wei, G. Lv, S. Li, and K. Morita: Mater. Sci. Semicond. Process., 2018, vol. 88, pp. 97–102.

    Article  CAS  Google Scholar 

  14. W. Yu, Y. Xue, J. Mei, X. Zhou, M. Xiong, and S. Zhang: J. Alloy Compd., 2019, vol. 805, pp. 198–204.

    Article  CAS  Google Scholar 

  15. Z. Ding, W. Ma, K. Wei, J. Wu, Y. Zhou, and K. Xie: J. Non-Cryst. Solids, 2012, vol. 358, pp. 2708–12.

    Article  ADS  CAS  Google Scholar 

  16. L. Huang, H. Lai, C. Lu, M. Fang, W. Ma, P. Xing, J. Li, and X. Luo: Hydrometallurgy, 2016, vol. 161, pp. 14–21.

    Article  CAS  Google Scholar 

  17. H. Lu, K. Wei, W. Ma, K. Xie, J. Wu, and Y. Lei: Metall. Mater. Trans. B, 2017, vol. 48B, pp. 2768–80.

    Article  ADS  Google Scholar 

  18. Margaria T J, Anglezio C, and Servant C: Proc. 6th Int. Ferroalloys Congr. INFACON, 1992, vol. 6, pp. 209–14.

  19. J.C. Anglézio, C. Servant, and F. Dubrous: J. Mater. Res., 1990, vol. 5, pp. 1894–99.

    Article  ADS  Google Scholar 

  20. S. Li, X. Long, L. Chen, and W. Qiu: J. Mater. Res. Technol., 2023, vol. 22, pp. 1911–23.

    Article  CAS  Google Scholar 

  21. S. Li, X. Deng, J. Wen, K. Wei, and W. Ma: Intermetallics, 2021, vol. 128, 106987.

    Article  CAS  Google Scholar 

  22. Y.V. Meteleva-Fischer, Y. Yang, R. Boom, B. Kraaijveld, and H. Kuntzel: Intermetallics, 2012, vol. 25, pp. 9–17.

    Article  CAS  Google Scholar 

  23. Z. Shan, J. Wen, G. Yang, F. Xu, J. Wu, K. Wei, and W. Ma: Silicon, 2023, vol. 15, pp. 4889–96.

    Article  CAS  Google Scholar 

  24. Y. Li, Y. Tan, P. Cao, J. Li, P. Jia, and Y. Liu: Mater. Res. Innov., 2015, vol. 19, pp. 81–85.

    Article  CAS  Google Scholar 

  25. Y. Ren, S. Ueda, and K. Morita: ACS Sustain. Chem. Eng., 2019, vol. 7, pp. 20107–13.

    Article  CAS  Google Scholar 

  26. Y. Liu, S. Wang, S. Jiang, X. Wang, J. Kong, P. Xing, Y. Zhuang, and X. Luo: J. Mater. Res. Technol., 2019, vol. 8, pp. 4470–76.

    Article  CAS  Google Scholar 

  27. R.H. Hopkins and A. Rohatgi: J. Cryst. Growth, 1986, vol. 75, pp. 67–79.

    Article  ADS  CAS  Google Scholar 

  28. L. Huang, H. Lai, C. Lu, C. Gan, M. Fang, P. Xing, J. Li, and X. Luo: Vacuum, 2016, vol. 129, pp. 38–44.

    Article  ADS  CAS  Google Scholar 

  29. C.A. Schneider, W.S. Rasband, and K.W. Eliceiri: Nat. Methods, 2012, vol. 9, pp. 671–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Y. Zhou, J. Wu, W. Ma, Y. Lei, and Y. Dai: J. Alloy Compd., 2018, vol. 751, pp. 257–65.

    Article  CAS  Google Scholar 

  31. Q. He, J. Wu, F. Yang, Y. Zhou, K. Liu, and W. Ma: Sep. Purif. Rev., 2022, vol. 51, pp. 452–67.

    Article  CAS  Google Scholar 

  32. F. Yang, J. Wu, and W. Ma: JOM, 2020, vol. 72, pp. 2663–69.

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 22078140), the Talent Training Program of Yunnan of China (Nos. 202005AC160041 and KKXY202252002), and the major R&D project of Yunnan of China (No. 202202AG050012).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jijun Wu, Kuixian Wei or Wenhui Ma.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shan, Z., Wu, J., Wei, K. et al. Effect of Sn Addition on the Evolution of Inclusions in Metallurgical Grade Silicon. Metall Mater Trans B 55, 1014–1026 (2024). https://doi.org/10.1007/s11663-024-03012-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-024-03012-6

Navigation