Skip to main content
Log in

Characterization of the Three-Dimensional Morphology and Formation Mechanism of Inclusions in Linepipe Steels

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The characterization of the three-dimensional (3D) morphology and modification of inclusions in linepipe steel plates were investigated in the present work. The deoxidation products, Al2O3 inclusions, were modified into deformable calcium aluminate inclusions by calcium treatment in order to efficiently prevent nozzle clogging. The effect of sulfur content on the morphological characteristics and chemical composition of inclusions by calcium treatment were analyzed by extracting inclusions from steel matrix using non-aqueous electrolyte and automatic scanning electron microscopy connects with energy-dispersive spectrometer. The evaluation of the effect of calcium treatment was proposed using the 3D morphology of inclusions. Meanwhile, the modification and control of inclusions in the linepipe steel were studied by thermodynamic calculation on calcium treatment with the strategy of reducing the size of inclusions before calcium treatment, and controlling the contents of [Al], [Ca], and total oxygen in a reasonable narrow range during calcium treatment. The modification and transformation process of alumina inclusions was revealed as Al2O3 → MgO-Al2O3 → CaO-MgO-Al2O3-CaS (after calcium treatment) → CaO-Al2O3-CaS. A kind of high-melting MgO-Al2O3 core was wrapped by the low-melting component of CaO-Al2O3 indicating an incomplete reduction of MgO and Al2O3 by calcium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. T. Kushida, Y. Higuchi, M. Numura, A. Yamamoto, K. Ohnishi, A. Teraguchi, and J. Fujino: Sumitomo Search, 1996, vol. 58, pp. 24-29.

    Google Scholar 

  2. G. Ye, P. Jönsson, and T. Lund: ISIJ Int., 1996, vol. 36, pp. S105-S08.

    Article  Google Scholar 

  3. S. K. Choudhary and A. Ghosh: ISIJ Int., 2008, vol. 48(11), pp. 1552-59.

    Article  Google Scholar 

  4. H. Suito and R. Inoue: ISIJ Int., 1996, vol. 36(5), pp. 528-36.

    Article  Google Scholar 

  5. L. Zhang and B. Thomas: ISIJ Int., 2003, vol. 43(3), pp. 271-91.

    Article  Google Scholar 

  6. L. Zhang, Y. Wang, and X. Zuo: Metall. Mater. Trans. B, 2008, vol. 39B, pp. 534-50.

    Article  Google Scholar 

  7. M. Long, X. Zuo, L. Zhang, and D. Chen: ISIJ Int., 2010, vol. 50(5), pp. 712-20.

    Article  Google Scholar 

  8. F. Grotts: Trans. ASTM, 1932, vol. 32, pp. 197-201.

    Google Scholar 

  9. W. Bielefeldt, A. Vilela, C. Moraes, and P. Fernandes: Steel Res. Int., 2007, vol. 78(12), pp. 857-62.

    Article  Google Scholar 

  10. W. Bielefeldt and A. Vilela: Steel Res. Int., 2010, vol. 81(12), pp. 1064-69.

    Article  Google Scholar 

  11. J. Farrell and D. Hilty: Iron Steelmak., 1975, vol. 2(5), pp. 17-22.

    Google Scholar 

  12. S. Saxena: Ironmak. Steelmak., 1982, vol. 9(2), pp. 50-57.

    Google Scholar 

  13. X. Wang, X. Li, Q. Li, F. Huang, H. Li, and J. Yang: Steel Res. Int., 2014, vol. 85(2), pp. 155-63.

    Article  Google Scholar 

  14. L. Holappa and A. Helle: J. Mater. Process. Tech., 1995, vol. 53(1), pp. 177-86.

    Article  Google Scholar 

  15. N. Verma, P. Pistorius, R. Fruehan, M. Potter, M. Lind, and S. Story: Metall. Mater. Trans. B, 2011, vol. 42B, pp. 720-29.

    Article  Google Scholar 

  16. L. Luyckx, J. Bell, A. McLean, and M. Korchynsky: Metall. Trans. B, 1970, vol. 1B, pp. 3341-50.

    Google Scholar 

  17. L. Bigelow and M. Flemings: Metall. Trans. B, 1975, vol. 6B, pp. 275-83.

    Article  Google Scholar 

  18. T. Ikeda, N. Fujino, and H. Ichihashi: Tetsu-to-Hagane, 1980, vol. 66(14), pp. 2040-49.

    Google Scholar 

  19. T. Perez, H. Quintanilla, and E. Rey: NACE International, Houston, TX, 1998.

  20. J. Xu, F. Huang, and X. Wang: Metall. Mater. Trans. B, 2016, vol. 47B, pp. 1217-27.

    Article  Google Scholar 

  21. W. Bielefeldt and A. Vilela: Steel Res. Int., 2015, vol. 86(4), pp. 375-85.

    Article  Google Scholar 

  22. G. Yang, X. Wang, F. Huang, D. Yang, P. Wei, and X. Hao: Metall. Mater. Trans. B, 2015, vol. 46B, pp. 145-54.

    Article  Google Scholar 

  23. G. Yang and X. Wang: ISIJ Int., 2015, vol. 55(1), pp. 126-33.

    Article  Google Scholar 

  24. D. Zhao, H. Li, C. Bao, and J. Yang: ISIJ Int., 2015, vol. 55(10), pp. 2115-24.

    Article  Google Scholar 

  25. Z. Deng and M. Zhu: Steel Res. Int., 2013, vol. 84(6), pp. 519-25.

    Article  Google Scholar 

  26. Y. Ito, M. Suda, Y. Kato, and H. Nakato: ISIJ Int., 1996, vol. 36, pp. S148-S50.

    Article  Google Scholar 

  27. M. Lind and L. Holappa: Metall. Mater. Trans. B, 2010, vol. 41B, pp. 359-66.

    Article  Google Scholar 

  28. W. Yang, L. Zhang, X. Wang, Y. Ren, X. Liu, and Q. Shan: ISIJ Int., 2013, vol. 53(8), pp. 1401-10.

    Article  Google Scholar 

  29. O. Haida, T. Emi, G. Kasai, and M. Naito: Tetsu-to-Hagane, 1980, vol. 66(3), pp. 354-62.

    Google Scholar 

  30. Y. Kusano, Y. Kawauchi, M. Wajima, and K. Sugawara: ISIJ Int., 1996, vol. 36, pp. S77-S80.

    Article  Google Scholar 

  31. G. Faulring, J. Farrell, and D. Hilty: Iron Steelmaker, 1980, vol. 7, no.2, pp.14-20.

    Google Scholar 

  32. J. Geldenhuis and P. Pistorius: Ironmak. Steelmak., 2000, vol. 27(6), pp. 442-49.

    Article  Google Scholar 

  33. X. Wang, X. Li, Q. Li, F. Huang, H. Li, and J. Yang: Acta Metall. Sin., 2013, vol. 49(5), pp. 553-61.

    Article  Google Scholar 

  34. K. Fang and R. Ni: Metall. Trans. A, 1986, vol. 17A, pp. 315-23.

    Google Scholar 

  35. G. Wang, S. Li, X. Ai, C. Zhang, and C. Lai: J. Iron Steel Res. Int., 2015, vol. 22(7), pp. 566-72.

    Article  Google Scholar 

  36. K. Mizuno, H. Todoroki, M. Noda, and T. Tohge: Iron Steelmak., 2001, vol. 28(8), pp. 93-101.

    Google Scholar 

  37. L. Zhang, Y. Ren, H. Duan, W. Yang, and L. Sun: Metall. Mater. Trans. B, 2015, vol. 46B, pp. 1809-25.

    Article  Google Scholar 

  38. H. Itoh, M. Hino, and S. Ban-Ya: Metall. Mater. Trans. B, 1997, vol. 28B, pp. 953-56.

    Article  Google Scholar 

  39. N. Verma, P. Pistorius, R. Fruehan, M. Potter, H. Oltmann, and E. Pretorius: Metall. Mater. Trans. B, 2012, vol. 43B, pp. 830-40.

    Article  Google Scholar 

  40. J. Park, D. Kim, and S. Lee: Metall. Mater. Trans. B, 2005, vol. 36B, pp. 67-73.

    Article  Google Scholar 

  41. K. Taguchi, H. Ono-Nakazato, T. Usui, and K. Marukawa: ISIJ Int., 2005, vol. 45(11), pp. 1572-76.

    Article  Google Scholar 

  42. Y. Ren, Y. Wang, S. Li, L. Zhang, X. Zuo, S. Lekakh, and K. Peaslee: Metall. Mater. Trans. B, 2014, vol. 45B, pp. 1291-303.

    Article  Google Scholar 

  43. S. Yang, Q. Wang, L. Zhang, J. Li, and K. Peaslee: Metall. Mater. Trans. B, 2012, vol. 43B, pp. 731-50.

    Article  Google Scholar 

  44. G. Yang, X. Wang, F. Huang, W. Wang, Y. Yin, and C. Tang: Steel Res. Int., 2014, vol. 85(5), pp. 784-92.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful for support from the National Science Foundation China (Grant Nos. 51274034, 51334002, and 51404019), State Key Laboratory of Advanced Metallurgy, Beijing Key Laboratory of Green Recycling and Extraction of Metals (GREM), the Laboratory of Green Process Metallurgy and Modeling (GPM2), and the High Quality Steel Consortium (HQSC) at the School of Metallurgical and Ecological Engineering at University of Science and Technology Beijing (USTB), China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lifeng Zhang.

Additional information

Manuscript submitted March 19, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Zhang, L., Yang, W. et al. Characterization of the Three-Dimensional Morphology and Formation Mechanism of Inclusions in Linepipe Steels. Metall Mater Trans B 48, 701–712 (2017). https://doi.org/10.1007/s11663-016-0833-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-016-0833-4

Keywords

Navigation