Skip to main content
Log in

Dissolution Kinetics of SiO2 into CaO-Fe2O3-SiO2 Slag

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

High-basicity sinter is the predominant Fe-bearing material used in blast furnace process in East Asia. The dissolution of SiO2 into molten calcium ferrite influences the assimilation process. In this study, a rotating cylinder method was used to explore the dissolution kinetics of SiO2 into CaO-Fe2O3-SiO2 slag. The influencing factors, including temperature, rotating time and speed, and initial composition of the slag, were considered. Results showed that the dissolution rate increased with increasing rotation speed and temperature, whereas the increase in ω(SiO2) or ω(Fe2O3)/ω(CaO) ratio in the initial slag composition decreased the dissolution rate. The diffusion coefficient and activation energy of SiO2 during the dissolution process ranged from 2.09 × 10−6 to 6.40 × 10−6 cm2 s−1 and 106.62 to 248.20 kJ mol−1, respectively. Concentration difference between the boundary layer and bulk phase was the primary driving force of the dissolution process; however, this process was also influenced by the slag viscosity and ion diffusivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. 1.P. R. Dawson, J. Ostwald and K. M. Hayes: Trans. Inst. Min. Metall., 1985, vol. 94, pp. C71-C78.

    Google Scholar 

  2. S. J. Zhang and S. T. Wang: IRON AND STEEL, 1992, vol. 27, pp. 7-12.

    Google Scholar 

  3. F. Matsuno and T. Harada: Sumitomo Metals, 1979, vol. 1, pp. 1-12.

    Google Scholar 

  4. X.M. Guo: The generation and mineralogy of calcium ferrite at sinter, 1999, pp. 143, 156.

  5. M. I. Pownceby, T. R. C. Patrick: Eur. J. Mineral., 2000, vol. 12, pp. 455-468.

    Article  Google Scholar 

  6. M. I. Pownceby, J. M. F. Clout: Trans. Instn Min. Metall., 2000, vol. 109, pp. 36-48.

    Google Scholar 

  7. M. I. Pownceby, T. R. C. Patrick: Metall. Mater. Trans. B, 2002, vol. 33, pp. 79-89.

    Google Scholar 

  8. N. V. Y. Scarlett, I. C. Madsen, I. M. Pownceby, et al.: J. Appl. Crystallogr., 2004, vol. 37, pp. 362-368.

    Article  Google Scholar 

  9. X. Ding, X. M. Guo: Metall. Mater. Trans. B, 2015, vol. 46, pp. 1-9.

    Google Scholar 

  10. X. Ding, X. M. Guo, C. Y. Ma, et al.: Metall. Mater. Trans. B, 2015, vol. 46, pp. 1146-1153.

    Article  Google Scholar 

  11. N. A. S. Webster, M. I. Pownceby, I. C. Madsen, et al.: Metall. Mater. Trans. B, 2014, vol. 45, pp. 2097-2105.

    Article  Google Scholar 

  12. X. Gao and W. Q. Liu: China Steel, 2009, vol. 10, pp. 25-27.

    Google Scholar 

  13. 13.K. Inoue, T. Ikeda: J. Iron Steel Inst. Jpn., 1982, vol. 68: 2190-2199.

    Google Scholar 

  14. M. F. Jin, G. S. Li, L. W. Dou, C. Shang and F. M. Shen: Iron and Steel, 2009, vol. 44, pp.7-11.

    Google Scholar 

  15. 16.N. Taguchi, T. Otomo and K. Tasaka: J. Iron Steel Inst. Jpn., 1983, vol. 69: 1409-1416.

    Google Scholar 

  16. B. N. Samaddar, W. D. Kingery, A. R. Cooper and JR.: J. Am. Ceram. Soc., 1964, vol. 47, pp. 249-254.

    Article  Google Scholar 

  17. T. Maeda, K. Nishioka, K. Nakashima and M. Shimizu: ISIJ Int., 2004, vol. 44, pp. 2046-2051.

    Article  Google Scholar 

  18. S. L. Xiang, X. W. Lv, B. Yu, C. G. Bai and J. Q. Yin: Metall. Mater. Trans. B, 2014, vol. 45, pp. 2106-2017.

    Google Scholar 

  19. S. Feichtinger, S. K. Michelic, Y. B. Kang and C. Bernhard: J. Am. Ceram. Soc., 2014, vol. 97, pp. 316-325.

    Article  Google Scholar 

  20. A. R. Cooper, JR. and W. D. Kingery: J. Am. Ceram. Soc., 1964, vol. 47, pp. 37-43.

    Article  Google Scholar 

  21. A. H. Bui, H. M. Ha, I. S. Chung and H. G. Lee: ISIJ Int., 2005, vol. 45, pp.1856-1863.

    Article  Google Scholar 

  22. K. H. Sandhage and G. J. Yurek: J. Am. Ceram. Soc., 1990, vol. 73, pp. 3633-3642.

    Article  Google Scholar 

  23. J. H. Liu, F. Verhaeghe, M. X. Guo, B. Blanpain and P. Wollants: J. Am. Ceram. Soc., 2007, vol. 90, pp. 3818-3824.

    Google Scholar 

  24. K. Yajima, H. Matsuura and F. Tsukikashi: ISIJ Int., 2010, vol. 50, pp. 191-194.

    Article  Google Scholar 

  25. X. Yu, R. J. Pomfret and K. S. Coley: Metall. Mater. Trans. B, 1997, vol. 28, pp. 275-279.

    Article  Google Scholar 

  26. 27.V. G. Levich: Physicochemical Hydrodynamics, Prentice-Hall, New York, 1962, 60-72

    Google Scholar 

  27. 28.X.H. Huang, S. L. Cao (2008) The theory of ironmaking and steelmaking metallurgy, Metallurgical Industry Press, Beijing, 211

    Google Scholar 

  28. K. R. Harris: J. Chem. Phys., 2009, vol. 131, pp. 054503.

    Article  Google Scholar 

  29. S. Taira, K. Nakashima and K. Mori: ISIJ Int., 1993, vol. 33, pp. 116-123.

    Article  Google Scholar 

  30. R. D. Shannon: Acta Crystallogr. A, 1976, vol. A32, pp. 751.

    Article  Google Scholar 

Download references

Acknowledgment

This study has been financially supported by NSFC (Natural Science Foundation of China, No. 51104192 and No. 51522403).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuewei Lv.

Additional information

Manuscript submitted March 30, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, B., Lv, X., Xiang, S. et al. Dissolution Kinetics of SiO2 into CaO-Fe2O3-SiO2 Slag. Metall Mater Trans B 47, 2063–2071 (2016). https://doi.org/10.1007/s11663-016-0627-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-016-0627-8

Keywords

Navigation