Skip to main content
Log in

Study on Slag–Steel Reaction Between CaO–Al2O3–Ce2O3–5 PctMgO-7 PctSiO2 Slag System and Fe–Al Steel System

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

In the steelmaking process of RE-containing steel, there exist several problems such as the instability of existing forms of RE elements and the nozzle clogging phenomenon caused by RE-containing inclusions. The indirect alloying method of RE elements is expected to solve these problems and deserves attention. In the current work, the slag–steel reaction between CaO–Al2O3–Ce2O3–5 pctMgO-7 pctSiO2 slag system and Fe–Al steel system was studied. We first made a thermodynamic analysis based on the IMCT “activity” theory (Ion and Molecule Coexistence Theory) for the slag system and the Wagner’s interaction parameter formalism for steel systems. On this basis, high temperature experiments were performed to study the variation of T.Ce in steel with reaction time, the evolution of non-metallic inclusion type in steel, and the change of precipitate type in slag. The results indicate that the final content of T.Ce in steel increased with the increase of w(CaO)/w(Al2O3) and w(Ce2O3) of the slag, as well as with the increase of w[Al] of the steel. The restrictive step in the initial stage of the slag–steel reaction was the interfacial reaction, where the reaction rate was only affected by a(Ce2O3) of the slag and a[Al] of the steel; for the medium stage, the accumulation rate of Ce content in steel decreased due to the consumption of reactants and the accumulation of products. Under the current experimental condition, a maximum of 80 ppm of Ce can be introduced into the steel during the slag–steel reaction. With the slag–steel reaction proceeding, the content of Ce and Mg in steel increased, while that of Al and O decreased, resulting in the partial or complete change of Al2O3 inclusions into MgAl2O4, CeAlO3, CeAl11O18, and their combinations. MgAl2O4 is a metastable inclusion in some experimental groups, which disappeared in the final stage. Different types of precipitates were found in the final slags, including 2CaO·Al2O3·Ce2O3, 2CaO·3Al2O3·Ce2O3, CeAlO3, MgAl2O4, and MgO. According to the type of inclusions in steel and precipitates in slag, the phase diagram showing the co-existence relation of CaO–Al2O3–Ce2O3–MgO slag system was determined. The present research results are helpful for further studying on the indirect alloying method of RE elements through RE-containing slag systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. C. Li: J. Rare Earths, 2013, vol. 34(3), pp. 78–85. https://doi.org/10.16533/j.cnki.15-1099/tf.2013.03.018.

    Article  Google Scholar 

  2. C. Li: J. Rare Earths, 2001, vol. 22(4), pp. 1–6. https://doi.org/10.16533/j.cnki.15-1099/tf.2001.04.001.

    Article  Google Scholar 

  3. Z. Yu: Metallurgical Industry Press, 1nd ed. Beijing, 1982.

  4. J. Zhu, H. Huang, and J. Xie: J. Iron Steel Res., 2017, vol. 29(7), pp. 513–29. https://doi.org/10.13228/j.boyuan.issn1001-0963.2017008.

    Article  CAS  Google Scholar 

  5. Y. Wang, C. Liu, and J. Qiu: J. Iron Steel Res., 2022, vol. 57(4), pp. 52–57. https://doi.org/10.13228/j.boyuan.issn0449-749x.20210570.

    Article  CAS  Google Scholar 

  6. C. Liu, M. Jiang, C. Li, Y. Wang, and J. Chen: Chin. J. Process. Eng., 2006, vol. 6(1), pp. 135–37.

    Google Scholar 

  7. C. Liu, M. Jiang, C. Li, and J. Chen: J. Northeastern Univ., 2005, vol. 26(11), pp. 1078–81.

    Google Scholar 

  8. C. Li, Y. Wang, J. Chen, C. Liu, and M. Jiang: J. Iron Steel Res., 2005, vol. 17(3), pp. 47–51.

    Article  Google Scholar 

  9. C. Liu, M. Jiang, Y. Wang, J. Chen, and C. Li: Acta Metall. Sin., 2005, vol. 18(6), pp. 701–06.

    CAS  Google Scholar 

  10. L. Chen, H. Long, X. Liu, M. Jin, and X. Ma: J. Rare Earths, 2016, vol. 34(4), pp. 447–52. https://doi.org/10.1016/S1002-0721(16)60047-9.

    Article  CAS  Google Scholar 

  11. Y. Xu, S. Song, and J. Wang: Mater. Lett., 2015, vol. 161(15), pp. 616–19. https://doi.org/10.1016/j.matlet.2015.09.051.

    Article  CAS  Google Scholar 

  12. J. Yan, Y. Gao, and L. Liang: Corros. Sci., 2011, vol. 53(1), pp. 329–37. https://doi.org/10.1016/j.corsci.2010.09.039.

    Article  CAS  Google Scholar 

  13. Luyckx L A: METSERV Incorporated, New Castle, 1981.

  14. M. Yan, C. Zhang, and Z. Sun: Appl. Surf. Sci., 2014, vol. 289, pp. 370–77. https://doi.org/10.1016/j.apsusc.2013.10.169.

    Article  CAS  Google Scholar 

  15. J. Yu, Z. Yu, and C. Wu: JOM, 1988, vol. 40(5), pp. 26–31.

    Article  CAS  Google Scholar 

  16. X. Zhang, J. Tang, C. Han, A. Wang, and J. Zhi: J. Rare Earths, 2021, vol. 42(4), pp. 117–30. https://doi.org/10.16533/j.cnki.15-1099/tf.20210034.

    Article  CAS  Google Scholar 

  17. J. Qi: Dissertation of Northeastern University, Shengyang, 2018.

  18. M. Zhu: Metallurgical Industry Press, 2nd. ed. Beijing, 2016.

  19. Z. Li: Metallurgical Industry Press, Beijing, 2007.

  20. Y. Yao, M. Zhu, D. Wang, C. Liu, and M. Jiang: J. Rare Earths, 2004, vol. 25(5), pp. 17–19. https://doi.org/10.16533/j.cnki.15-1099/tf.2004.05.006.

    Article  Google Scholar 

  21. D. Wang, Y. Yao, X. Wang, and M. Jiang: Steelmaking, 2003, vol. 19(5), pp. 14–17.

    Google Scholar 

  22. W. Wang, B. Lu, and D. Xiao: Metall. Mater. Trans. B, 2016, vol. 47B, pp. 384–89. https://doi.org/10.1007/s11663-015-0474-z.

    Article  CAS  Google Scholar 

  23. S. He, Y. Chen, W. Pan, Q. Wang, X. Zhang, and Q. Wang: J. Iron Steel Res., 2020, vol. 32(9), pp. 771–79. https://doi.org/10.13228/j.boyuan.issn1001-0963.20200024.

    Article  CAS  Google Scholar 

  24. X. Yang, H. Long, G. Cheng, C. Wu, and B. Wu: J. Rare Earths, 2011, vol. 29(11), pp. 1079–83. https://doi.org/10.1016/S1002-0721(10)60602-3.

    Article  CAS  Google Scholar 

  25. H. Long, G. Cheng, B. Wu, and Y. Wu: J. Rare Earths, 2010, vol. 28(6), pp. 721–27.

    CAS  Google Scholar 

  26. Z. Chen, X. Wu, and F. Ye: J. Chin. Ceram. Soc., 1985, vol. 13(4), pp. 475–87.

    CAS  Google Scholar 

  27. R. Li: Tsinghua University Press, Beijing, 1986.

  28. T. Nakasuga, K. Nakashima, and K. Mori: ISIJ Int., 2004, vol. 44(4), pp. 665–72. https://doi.org/10.2355/isijinternational.44.665.

    Article  CAS  Google Scholar 

  29. H. Sun, K. Mori, and R.D. Pehlke: Metall. Mater. Trans. B, 1993, vol. 24B, pp. 113–20.

    Article  CAS  Google Scholar 

  30. G. Okuyama, K. Yamaguchi, and S. Takeuchi: ISIJ Int., 2000, vol. 40(2), pp. 121–28. https://doi.org/10.2355/isijinternational.40.121.

    Article  CAS  Google Scholar 

  31. J.H. Park and L. Zhang: Metall. Mater. Trans. B, 2020, vol. 51B, pp. 2453–82. https://doi.org/10.1007/s11663-020-01954-1.

    Article  CAS  Google Scholar 

  32. J. Shin, Y. Chung, and J.H. Park: Metall. Mater. Trans. B, 2016, vol. 48B, pp. 46–59. https://doi.org/10.1007/s11663-016-0734-6.

    Article  CAS  Google Scholar 

  33. C. Xuan, E.S. Persson, J. Jensen, R. Sevastopolev, and M. Nzotta: J. Alloys Compd., 2020, vol. 812(5), p. 152149. https://doi.org/10.1016/j.jallcom.2019.152149.

    Article  CAS  Google Scholar 

  34. Z. Yan, T. Htet, J. Hage, K. Meijer, and Z. Li: Metall. Mater. Trans. B, 2023, vol. 54B, pp. 868–79. https://doi.org/10.1007/s11663-023-02732-5.

    Article  CAS  Google Scholar 

  35. X. Yang, J. Duan, C. Shi, M. Zhang, L. Zhang, and J. Wang: Metall. Mater. Trans. B, 2011, vol. 42B, pp. 738–70. https://doi.org/10.1007/s11663-011-9491-8.

    Article  CAS  Google Scholar 

  36. X. Yang, M. Zhang, C. Shi, G. Chai, and J. Zhang: Metall. Mater. Trans. B, 2012, vol. 43B, pp. 241–66. https://doi.org/10.1007/s11663-011-9612-4.

    Article  CAS  Google Scholar 

  37. C. Wu, G. Cheng, and J. Tian: ISIJ Int., 2013, vol. 32(6), pp. 541–50. https://doi.org/10.1515/htmp-2012-0176.

    Article  CAS  Google Scholar 

  38. C. Wu, G. Cheng, H. Long, and X. Yang: ISIJ Int., 2013, vol. 32(3), pp. 207–14. https://doi.org/10.1515/htmp-2012-0119.

    Article  CAS  Google Scholar 

  39. J. Zhang: Metallurgical Industry Press, Beijing, 2007.

  40. X. Zheng and C. Liu: Metall. Mater. Trans. B, 2021, vol. 52B, pp. 3183–92. https://doi.org/10.1007/s11663-021-02245-z.

    Article  CAS  Google Scholar 

  41. X. Chen, T. Deng, Z. Zhao, and B. Yan: ISIJ Int., 2020, vol. 60(1), pp. 1602–09. https://doi.org/10.2355/isijinternational.ISIJINT-2019-683.

    Article  CAS  Google Scholar 

  42. T. Yoshinori, N. Sano, and S. Seetharaman: ISIJ Int., 2009, vol. 49(2), pp. 156–63. https://doi.org/10.2355/isijinternational.49.156.

    Article  Google Scholar 

  43. Y.J. Kang, D. Sichen, and K. Morita: ISIJ Int., 2007, vol. 47(6), pp. 805–10. https://doi.org/10.2355/isijinternational.47.805.

    Article  CAS  Google Scholar 

  44. J. Gao, H. Xu, X. Lan, and Z. Guo: Ceram. Int., 2022, vol. 48(23), pp. 34907–14. https://doi.org/10.1016/j.ceramint.2022.08.080.

    Article  CAS  Google Scholar 

  45. J. Liao, G. Qing, and B. Zhao: Metals, 2023, vol. 13(2), p. 224. https://doi.org/10.3390/met13020224.

    Article  CAS  Google Scholar 

  46. M. Li, R. Li, and T. Zhang: Ceram. Int., 2022, vol. 48(21), pp. 31614–26.

    Article  CAS  Google Scholar 

  47. M. Li, T. Zhang, W. Wang, H. Zhang, R. Li: Miner. Met. Mater. Ser., 2022.

  48. C.W. Bale, E. Bélisle, P. Chartrand, S.A. Decterov, G. Eriksson, A.E. Gheribi, K. Hack, I.-H. Jung, Y.-B. Kang, J. Melancon, A.D. Pelton, S. Petersen, C. Robelin, J. Sangster, P. Spencer, and M.-A. Van Ende: Calphad, 2016, vol. 55, pp. 1–19. https://doi.org/10.1016/j.calphad.2016.05.002.

    Article  CAS  Google Scholar 

  49. X. Li, L. Yang, Q. Zhou, T. Qi, G. Liu, and Z. Peng: Appl. Clay Sci., 2020, vol. 185, p. 105406. https://doi.org/10.1016/j.clay.2019.105406.

    Article  CAS  Google Scholar 

  50. J. Leitner, P. Chuchvalec, D. Sedmidubsky, A. Strejc, and P. Abrman: Thermochim. Acta, 2002, vol. 395(1), pp. 27–46. https://doi.org/10.1016/S0040-6031(02)00177-6.

    Article  Google Scholar 

  51. O. Kubaschewski and H. Uenal: High Temp. High Press., 1977, vol. 9(3), pp. 361–65.

    CAS  Google Scholar 

  52. U.E.D.A. Shigeru, K. Morita, and N. Sano: ISIJ Int., 1998, vol. 38(12), pp. 1292–96. https://doi.org/10.2355/isijinternational.38.1292.

    Article  Google Scholar 

  53. T. Du: J. Iron Steel Res., 1994, vol. 6(3), pp. 6–12.

    CAS  Google Scholar 

  54. Y. Zhai: Metallurgical Industry Press, Beijing, 2007.

  55. M. Susa: Slag Atlas, 2nd ed. Verlag Stahleisen GmbH, 1995.

  56. P. Wu and A.D. Pelton: J. Alloys Compd., 1992, vol. 179(1), pp. 259–87. https://doi.org/10.1016/0925-8388(92)90227-Z.

    Article  CAS  Google Scholar 

  57. G. Eriksson and A.D. Pelton: Metall. Mater. Trans. B, 1993, vol. 24, pp. 807–16. https://doi.org/10.1007/BF02663141.

    Article  Google Scholar 

  58. I.H. Jung, S.A. Decterov, and A.D. Pelton: J. Phase Equilibria Diffus., 2004, vol. 25(4), pp. 329–45. https://doi.org/10.1002/chin.200504227.

    Article  CAS  Google Scholar 

  59. J.R. Taylor and A.T. Dinsdale: Calphad, 1990, vol. 14(1), pp. 71–88. https://doi.org/10.1016/0364-5916(90)90041-W.

    Article  CAS  Google Scholar 

  60. A.C. Tas and M. Akinc: J. Am. Ceram. Soc., 1994, vol. 77(11), pp. 2953–60. https://doi.org/10.1111/j.1151-2916.1994.tb04530.x.

    Article  CAS  Google Scholar 

  61. I.-H. Jung, S. Decterov, and A.D. Pelton: J. Eur. Ceram. Soc., 2005, vol. 25, pp. 313–33. https://doi.org/10.1016/j.jeurceramsoc.2004.02.012.

    Article  CAS  Google Scholar 

  62. E. Haccuria, T. Crivits, and P.C. Hayes: J. Am. Ceram. Soc., 2016, vol. 99(2), pp. 691–704. https://doi.org/10.1111/jace.13991.

    Article  CAS  Google Scholar 

  63. R. Kitano, M. Ishii, U.O. Motohiro, and K. Morita: ISIJ Int., 2016, vol. 56(11), pp. 1893–1901. https://doi.org/10.2355/isijinternational.ISIJINT-2016-201.

    Article  CAS  Google Scholar 

  64. X. Lan, J. Gao, Y. Du, and Z. Guo: J. Am. Ceram. Soc., 2020, vol. 103(4), pp. 2845–58. https://doi.org/10.1111/jace.16946.

    Article  CAS  Google Scholar 

  65. Z. Zhao, X. Chen, B. Glaser, and B. Yan: Metall. Mater. Trans. B, 2019, vol. 50B, pp. 395–406. https://doi.org/10.1007/s11663-018-1471-9.

    Article  CAS  Google Scholar 

  66. Y. Liang, Y. Che: Northeastern University Press, Shengyang, 1993.

  67. Y. Li, C. Liu, T. Zhang, M. Jiang, and C. Peng: Metall. Res. Technol., 2017, vol. 114(3), p. 304. https://doi.org/10.1051/metal/2017001.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Key R&D Program of China (2021YFC2901200), the National Natural Science Foundation of China (52104327), the Fundamental Research Funds for the Central Universities (N2325009, N2425020, N2425003, N2425032), Postdoctoral Science Foundation (2020M680966, 20210206), Young Elite Scientists Sponsorship Program by CAST (2022QNRC001), Liaoning Provincial Natural Science Foundation of China (No. 2022-YQ-09, 2023-MSBA-050, 2023-MSBA-112), and National funded postdoctoral researcher Program (GZC20230393).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiyu Qiu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Huo, G., Qiu, J. et al. Study on Slag–Steel Reaction Between CaO–Al2O3–Ce2O3–5 PctMgO-7 PctSiO2 Slag System and Fe–Al Steel System. Metall Mater Trans B (2024). https://doi.org/10.1007/s11663-024-03089-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11663-024-03089-z

Navigation