Skip to main content
Log in

Anodic Bubble Behavior and Voltage Drop in a Laboratory Transparent Aluminum Electrolytic Cell

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The anodic bubbles generated in aluminum electrolytic cells play a complex role to bath flow, alumina mixing, cell voltage, heat transfer, etc., and eventually affect cell performance. In this paper, the bubble dynamics beneath the anode were observed for the first time from bottom view directly in a similar industrial electrolytic environment, using a laboratory-scale transparent aluminum electrolytic cell. The corresponding cell voltage was measured simultaneously for quantitatively investigating its relevance to bubble dynamics. It was found that the bubbles generated in many spots that increased in number with the increase of current density; the bubbles grew through gas diffusion and various types of coalescences; when bubbles grew to a certain size with their surface reaching to the anode edge, they escaped from the anode bottom suddenly; with the increase of current density, the release frequency increases, and the size of these bubbles decreases. The cell voltage was very consistent with bubble coverage, with a high bubble coverage corresponding to a higher cell voltage. At low current density, the curves of voltage and coverage fluctuated in a regularly periodical pattern, while the curves became more irregular at high current density. The magnitude of voltage fluctuation increased with current density first and reached a maximum value at current density of 0.9 A/cm2, and decreased when the current density was further increased. The extra resistance induced by bubbles was found to increase with the bubble coverage, showing a similar trend with published equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

t :

Time, s

a :

Anode length, mm

b :

Anode width, mm

i :

Bubble serial ID, dimensionless

I :

Total bubble number in one image, dimensionless

S i :

The ith bubble area, mm2

j :

Image serial ID, dimensionless

J :

Total image number at a fixed current density

m :

Cell voltage datum serial ID, dimensionless

M :

The total number of cell voltage data, dimensionless, dimensionless

V m :

The mth cell voltage datum, V

V ave :

The average value of cell voltage, V

V max-fluctuation :

The maximum fluctuation of cell voltage, V

V ave-fluctuation :

The mean fluctuation of cell voltage, V

K 0 :

The resistivity of the cryolite, ohm m

d 0 :

The depth of the bubble layer, mm

A :

The area of the underside surface of anode, mm2

H :

The depth of ACD, mm

ΔR :

The extra resistance due the existing bubble, ohm

\( {\varphi } \) :

Gas coverage

\( \overline{\varphi } \) :

Average gas coverage

References

  1. K. Grjotheim: Aluminum Electrolysis: Fundamentals of the Hall-Heroult process, 2nd ed, p. 443, Aluminum-Verlag, Dusseldorf, 1982.

    Google Scholar 

  2. S. Fortin, M. Gerhardt, and A. J. Gesing: Light Metals, TMS, Los Angeles, PA, 1984, pp. 385–95.

    Google Scholar 

  3. W. E. Haupin: JOM, 1971, vol. 23(10), pp. 46–49.

    Article  Google Scholar 

  4. W. E. Haupin, and W. C. McGrew: Aluminium, 1975, vol. 51, pp. 273–75.

    Google Scholar 

  5. N. E. Richards: Light Metals, TMS, Phoenix, PA, 1988, pp. 521–29.

    Google Scholar 

  6. N. Richards, H. Gudbrandsen, S. Rolseth, and J. Thonstad: Light Metals, TMS, San Diego, PA, 2003, pp. 315–22.

    Google Scholar 

  7. W. Zhang: Modeling of Anode Gas Evacuation and Current Efficiency in Hall-Heroult cells, University of Auckland, Auckland, 1993.

    Google Scholar 

  8. K. Qian, Z. D. Chen, and J. J. J. Chen: J. Appl. Electrochem., 1998, vol. 28, pp. 1141–45.

    Article  Google Scholar 

  9. S. Poncsak, L. I. Kiss, D. Toulouse, A. Perron, and S. Peron: Light Metals, TMS, San Antonio, PA, 2006, pp. 457–62.

    Google Scholar 

  10. Y. Wang, L. Zhang, and X. Zuo: Light Metals, TMS, San Francisco, PA, 2009, pp. 581–86.

    Google Scholar 

  11. Y. Wang, and L. Zhang: Light Metals, TMS, Warrendale, PA, 2010, pp. 207–14.

    Google Scholar 

  12. K. Vekony, and L. I. Kiss: Metall. Mater. Trans. B, 2010, vol. 41B, pp. 1006–17.

    Article  Google Scholar 

  13. K. Vekony, and L. I. Kiss: Metall. Mater. Trans. B, 2012, vol. 43B, pp. 1086–97.

    Article  Google Scholar 

  14. X. Wang, G. Tarcy, S. Whelan, S. Porto, C. Ritter, and B. Ouellet: Light Metals, TMS, Orlando, PA, 2007, pp. 539–44.

    Google Scholar 

  15. S. Das, Y. Morsi, G. Brooks, W. Yang, and J.J.J. Chen: Colloids Surf. A, 2012, vol. 411, pp. 94–104.

    Article  Google Scholar 

  16. K. Zhang, Y. Feng, P. J. Witt, W. Yang, M. Cooksey, Z. Wang, and M. P. Schwarz: J. Appl. Electrochem., 2014, vol. 44, pp. 1081–92.

    Article  Google Scholar 

  17. K. Qian, and J. J. J. Chen: J. Appl. Electrochem., 1997, vol. 27, pp. 434–40.

    Article  Google Scholar 

  18. J. J. J. Chen, K. X. Qian, and J. C. Zhao: Trans IChemE, 2001, vol. 79, 383–88.

    Article  Google Scholar 

  19. Y. Xue, N. Zhou, and S. Bao: Chin. J. Nonferrous. Met., 2006, vol. 16, pp. 1823–28.

    Google Scholar 

  20. M. Alam, W. Yang, K. Mohanarangam, G. Brooks, and Y. S. Morsi: Metall. Mater. Trans. B, 2013, vol. 44B, pp. 1155–65.

    Article  Google Scholar 

  21. K. Zhang, Y. Feng, M. P. Schwarz, M. Cooksey, and Z. Wang: Light Metals, TMS, Warrendale, PA, 2012, pp. 881–86.

    Google Scholar 

  22. K. Zhang, Y. Feng, M. P. Schwarz, Z. Wang, and M. Cooksey: Ind. Eng. Chem. Res., 2013, vol. 52, pp. 11378–390.

    Article  Google Scholar 

  23. Z. Qiu, L. Fan, and K. Grjotheim: Light Metals, TMS, New Orleans, PA, 1986, pp. 525–33.

    Google Scholar 

  24. Z. Qiu, L. Fan, N. Feng, K. Grjotheim, and H. Kvande: Light Metals, TMS, Colorado, PA, 1987, pp. 409–16.

    Google Scholar 

  25. Z. Qiu, and M. Zhang: Electrochimica Acta., 1987, vol. 32, pp. 607–13.

    Article  Google Scholar 

  26. Z. Qiu, L. Fan, K. Grjotheim, and H. Kvade: J. Appl. Electrochem., 1987, vol. 17, pp. 707–14.

    Article  Google Scholar 

  27. B. Gao, X. Hu,J. Xu, Z. Shi, Z. Wang, and Z. Qiu: Light Metals, TMS, San Antonio, PA, 2006, pp. 467–70.

    Google Scholar 

  28. J. Xu, Z. Shi, B. Gao, and Z. Qiu: Chin. J. Nonferrous. Met., 2004, vol. 14, pp. 298–301.

    Google Scholar 

  29. S. Yang, F. Yang, Q. Liu, X. Hu, Z. Wang, Z. Shi, and B. Gao: Light Metals, TMS, San Francisco, PA, 2009, pp. 65–68.

    Google Scholar 

  30. T. Utigard, and J. M. Toguri: Light Metals, TMS, New Orleans, PA, 1986, pp. 405–13.

    Google Scholar 

  31. T. Utigard, J. M. Toguri, and S. W. Ip: Light Metals, TMS, Phoenix, PA, 1988, pp. 703–06.

    Google Scholar 

  32. L. Cassayre, T. A. Utigard, and S. Bouvet, S: JOM, 2002, vol. 54(5), pp. 41–45.

    Article  Google Scholar 

  33. L. Cassayre, G. Plascencia, T. Marin, S. Fan, and T. A. Utigard: Light Metals, TMS, San Antonio, PA, 2006, pp. 379–383.

    Google Scholar 

  34. J. Xue, and H. A. Oye: Light Metals, TMS, Las Vegas, PA, 1995, pp. 265–71.

    Google Scholar 

  35. Z. Zhao, Z. Wang, B. Gao, Y. Feng, Z. Shi, and X. Hu: Light Metals, TMS, Orlando, PA, 2015, pp. 801–06.

    Google Scholar 

  36. N. Feng: Aluminum Electrolysis, 1st ed., p. 401, Chemical industry press, Beijing, 2006.

    Google Scholar 

  37. Z. Qiu: Principle and Application of Aluminum Electrolysis, 1st ed., p. 572, China University of Mining and Technology Press, Xuzhou, 1998.

    Google Scholar 

  38. R. J. Aaberg, V. Ranum, K. Willisamson, and B. J. Welch: Light Metals, TMS, Warrendale, PA, 1997, pp. 341–46.

    Google Scholar 

  39. Hartland, Stanley and R. Whitham: Axisymmetric Fluid-Liquid Interfaces: Tables Giving the Shape of Sessile and Pendant Drops and External Menisci, with Examples of their Use, 1st ed. Elsevier Scientific Publishing Co., New York, 1976, p. 782.

  40. P. Aussillous, and D. Quere: Europhys. Lett., 2002, vol. 59, pp. 370–376.

    Article  Google Scholar 

  41. S. Poncsak, L. I. Kiss, R. T. Bui, P. Desclaux, J. P. Huni, and V. Potocnik: Light Metals, TMS, Nashville, PA, 2000, pp. 139–54.

    Google Scholar 

  42. M. A. Cooksey, M. P. Taylor, and J. J. J. Chen: JOM, 2008, vol. 60, pp. 51–57.

    Article  Google Scholar 

  43. P. J. Side, and C. W. Tobias: J. Electrochem. Soc., 1982, vol. 129(12), pp. 2715–20.

    Article  Google Scholar 

  44. G. J. Houston, M. P. Taylor, and D. J. Williams: Light Metals, TMS, Phoenix, PA, 1988, pp. 641–45.

    Google Scholar 

  45. A. Solheim and J. Thonstad: Light Metals, TMS, New Orleans, PA, 1986, pp. 397–403.

    Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude for the financial support by the National Natural Science Foundation of China (Grant Nos. 51322406, 51434005, 51474060, 51574070, and 51529401). Zhibin Zhao would like to thank the China Scholarship Council (CSC) for a visiting PhD scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bingliang Gao.

Additional information

Manuscript submitted July 12, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Z., Wang, Z., Gao, B. et al. Anodic Bubble Behavior and Voltage Drop in a Laboratory Transparent Aluminum Electrolytic Cell. Metall Mater Trans B 47, 1962–1975 (2016). https://doi.org/10.1007/s11663-016-0598-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-016-0598-9

Keywords

Navigation