Skip to main content
Log in

A numerical assessment of bubble-induced electric resistance in aluminium electrolytic cells

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

This paper reports on an assessment of the bubble-induced electrical resistance in the Hall-Héroult process for primary aluminium production through a combined use of physical and numerical modelling. Using a physical air–water model, the transient bubble dynamics beneath the bottom surface of an anode was captured using a digital camera. Bubble morphology information obtained from the experiment was used to set up a numerical model. Computational fluid dynamics (CFD) modelling was applied to predict the current flow and the corresponding voltage drop across the electrolytic cell with and without the presence of bubbles. The predicted bubble-induced voltage drop for a current density of 0.7 A cm−2 is about 0.11 V for a bubble coverage of 37 % and 0.29 V for a bubble coverage of 50 %. These values are within the range of experimental measurements reported for commercial cells. The predictions show that the presence of bubbles does not greatly affect global current distribution within the whole cell, but it does significantly affect the local current flow at the anode-bath interface. Locally high current flow occurs at the contact point of the anode bottom surface, bubble and liquid. In addition to the effect of bubble coverage, the bubble size and bubble thickness affect the voltage drop significantly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Haupin W (1971) Scanning reference electrode for voltage contours in alumium smelting cells. J Met 23:46

    CAS  Google Scholar 

  2. Cooksey MA, Taylor MP, Chen JJJ (2008) JOM 60:51

    Article  CAS  Google Scholar 

  3. Kasherman D, Skyllas-Kazacos M (1988) J Appl Electrochem 18:863–868

    Article  CAS  Google Scholar 

  4. Qian K, Chen JJJ, Matheou N (1997) J Appl Electrochem 27:434–440

    Article  CAS  Google Scholar 

  5. Qian K, Chen ZD, Chen JJJ (1998) J Appl Electrochem 28:1141–1145

    Article  CAS  Google Scholar 

  6. Zoric J, Solheim A (2000) J Appl Electrochem 30:787–794

    Article  CAS  Google Scholar 

  7. Perron AL, Kiss LI, Poncsak S (2006) J Appl Electrochem 36:1381–1389

    Article  CAS  Google Scholar 

  8. Perron AL, Kiss LI, Poncsak S (2007) J Appl Electrochem 37:303–310

    Article  CAS  Google Scholar 

  9. Alam M, Yang W, Mohanarangam K, Brooks G, Morsi YS (2013) Metall Mater Trans B 44B:1155–1165

    Article  Google Scholar 

  10. Molenaar D, Ding K, Kapoor A (2011) Light metals 2011. TMS, Warrendale 985

    Google Scholar 

  11. Feng YQ, Cooksey M, Schwarz MP (2011) Light metals 2011. TMS, Warrendale 543

    Google Scholar 

  12. Zhang KY, Feng YQ, Schwarz MP, Wang ZW, Cooksey MA (2013) Ind Eng Chem Res 52:11378–11390

    Article  CAS  Google Scholar 

  13. Wang Q, Li BK, He Z, Feng NX (2013) Metall Mater Trans B

  14. Das A, Morsi Y, Brooks G, Yang W, Chen JJJ (2011) 10th Australasian aluminium smelting technology conference, Launceston, Tasmania, Australia, October 09–14

  15. Wang YF, Zhang LF (2010) Light metals 2010. TMS, Seattle 14

    Google Scholar 

  16. Einarsrud KE (2010) Metall Mater Trans B-Process Metall Mater Process Sci 41:560

    Article  Google Scholar 

  17. Einarsrud KE, Johansen ST (2011) 8th International conference on CFD in the oil, gas, metallurgical and process industries, Trondheim, Norway, 21 June 2011

  18. Fortin S, Gerhardt M, Gesing AJ (1984) J Met 35:92

    Google Scholar 

  19. Grjotheim K, Krohn C, Thonstad J (1982) Aluminium electrolysis: fundamentals of the Hall-Héroult process, Dusseldorf, Germany, p. 146

  20. Cassayre L, Utigard TA, Bouvet S (2002) J Met 41–45

  21. Aaberg RJ, Ranum V, Williamson K (1997) Light Met 341

  22. Zhuxian Qiu (2006) Nonferrous Metal Metallurgy, P51. Metallurgical Industry Press, Beijing

    Google Scholar 

  23. Sides PJ, Tobias CW (1982) J Electrochem Soc 129(12):2715–2720

    Article  CAS  Google Scholar 

  24. Solheim A, Thonstad J (1986) Light Met 397

  25. Houston GJ, Taylor MP,Williams DJ, Grjotheim K (1988) Light Met 641–645

  26. Grjotheim K, Welch BJ (1980) Aluminium Smelter Technology: A pure and applied approach. Aluminium-Verlag GmbH, Dusseldorf

    Google Scholar 

  27. Vogt H (2012) Electrochim Acta 78:183

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work is financially supported by CSIRO Minerals Down Under Flagship. Kaiyu Zhang thanks the China Scholarship Council (CSC) for a visiting PhD scholarship and the China Nature Science Foundation Grant under Grant No: 51228401.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuqing Feng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, K., Feng, Y., Witt, P.J. et al. A numerical assessment of bubble-induced electric resistance in aluminium electrolytic cells. J Appl Electrochem 44, 1081–1092 (2014). https://doi.org/10.1007/s10800-014-0721-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-014-0721-z

Keywords

Navigation