Skip to main content
Log in

Utilization of Coke Oven Gas and Converter Gas in the Direct Reduction of Lump Iron Ore

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The application of off-gases from the integrated steel plant for the direct reduction of lump iron ore could decrease not only the total production cost but also the energy consumption and CO2 emissions. The current study investigates the efficiency of reformed coke oven gas (RCOG), original coke oven gas (OCOG), and coke oven gas/basic oxygen furnace gas mixtures (RCOG/BOFG and OCOG/BOFG) in the direct reduction of lump iron ore. The results were compared to that of reformed natural gas (RNG), which is already applied in the commercial direct reduction processes. The reduction of lump ore was carried out at temperatures in the range of 1073 K to 1323 K (800 °C to 1050 °C) to simulate the reduction zone in direct reduction processes. Reflected light microscopy, scanning electron microscopy, and X-ray diffraction analysis were used to characterize the microstructure and the developed phases in the original and reduced lump iron ore. The rate-controlling mechanism of the reduced lump ore was predicted from the calculation of apparent activation energy and the examination of microstructure. At 1073 K to 1323 K (800 °C to 1050 °C), the reduction rate of lump ore was the highest in RCOG followed by OCOG. The reduction rate was found to decrease in the order RCOG > OCOG > RNG > OCOG-BOF > RCOG-BOFG at temperatures 1173 K to 1323 K (900 °C to 1050 °C). The developed fayalite (Fe2SiO4), which resulted from the reaction between wüstite and silica, had a significant effect on the reduction process. The reduction rate was increased as H2 content in the applied gas mixtures increased. The rate-determining step was mainly interfacial chemical reaction with limitation by gaseous diffusion at both initial (20 pct reduction) and moderate (60 pct reduction) stages of reduction. The solid-state diffusion mechanism affected the reduction rate only at moderate stages of reduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. A. Babich and D. Senk: The Coal Handbook: Towards Cleaner Production, vol. 2: Coal utilization, D. Osborne, ed., Woodhead Publishing Ltd., Oxford, Cambridge, Philadelphia, New Delhi, 2013, pp. 267–311.

  2. J. Arvola, J. Harkonen, M. Mottonen, H. Haapasalo, and P. Tervonen: Low Carbon Econ., 2011, vol. 2, pp. 115-22.

    Article  Google Scholar 

  3. P. Diemer, K. Knop, H.B. Lüngen, M. Reinke, and C. Wuppermann: Stahl Eisen, 2007, vol. 127, pp. 19-24.

    Google Scholar 

  4. P. Diemer, H.-J. Killich, K. Knop, H.B. Lüngen, M. Reinke, and P. Schmöle: Proc., 2 nd International Meeting on Ironmaking/ 1 st International Symposium on Iron Ore, Vitoria, Espirito Santo, Brazil, 2004, pp. 1–14.

  5. P. Diemer, H.B. Lüngen, and M. Reinke: Proc. METEC InSteelCon, ECIC, VDEh, Düsseldorf, Germany, 2011, Session 3, pp. 1–7.

  6. K. Knop: Stahl Eisen, 2002, vol. 122, pp. 43-51.

    Google Scholar 

  7. R. Remus, M. Monsonet, S. Roudier, and L. Sancho: JRC Reference Report. http://www.eippcb.jrc.ec.europa.eu/reference/BREF/IS_Adopted_03_2012.pdf, 2013.

  8. Coke Market Survey 2011: http://www.resource-net.com/files/Sample, Pages.pdf.

  9. World Steel Association: Steel Statistical Yearbook 2012, Brussels, Belgium, 2012.

    Google Scholar 

  10. Z. Yang, Y. Zhang, X. Wang, Y. Zhang, X. Lu, and W. Ding: Energ. Fuel, 2010, vol. 24, pp. 785-88.

    Article  Google Scholar 

  11. I.G. Tovarovskii and A.E. Merkulov: Steel Transl., 2011, vol. 41, pp. 499-510.

    Article  Google Scholar 

  12. P. Hellberg, T.L.I. Jonsson, P.G. Jönsson, and D.Y Sheng: Proc., 4th international Conference on CFD in the Oil and Gas, Metallurgical and Process Industries SINTEF/NTNU, Trondheim, Norway, 2005, Session M-C, pp. 1–5.

  13. E. Proface and S. Pivot: Proc., METEC InSteelCon, ECIC, VDEh, Düsseldorf, Germany, 2011, Session 3, pp. 1–7.

  14. D. Andahazy, G. Löffler, F. Winter, C. Feilmayr, and T. Bürgler: ISIJ Int., 2005, vol. 45, pp. 166-74.

    Article  Google Scholar 

  15. S. Matsuzaki, K. Higuchi, A. Shinotake, and K. Saito: Proc. International Congress on the Science and Technology of Ironmaking (ICSTI), Rio de Janeiro, Brazil, 2012, pp. 977–83.

  16. M.S. Chu, T.I. Guo, Z.G. Liu, X.X. Xue, and J.I. Yagi: Proc., International Congress on the Science and Technology of Ironmaking (ICSTI), Rio de Janeiro, Brazil, 2012, pp. 992–1004.

  17. T. Miwa, H. Okuda, M. Osame, S. Watakabe, and K. Saito: Proc., METEC InSteelCon, ECIC, VDEh, Düsseldorf, Germany, 2011, Session 1, pp. 1–5.

  18. A. Babich, D. Senk, H.W. Gudenau, and K.Th. Mavrommatis: Ironmaking Textbook, 1st ed., Wissenschaftsverlag Mainz, Aachen, Germany, 2008.

    Google Scholar 

  19. P.E. Kovalenko, A.P. Chebotarev, V.F. Pashinskii, V.M. Zamuruev, I.G. Tovarovskii, N.G. Boiko, V.S. Plevako, and B.S. Trunov: Metallurgy, 1989, vol. 9, pp. 22-23.

    Google Scholar 

  20. E.A. Mousa, A. Babich, and D. Senk: Steel Res. Int., 2013, vol. 84. DOI:10.1002/srin.201200333.

  21. R.G. Morales: Proc. 2nd Latin American Steel and Iron Ore Conference, Rio de Janeiro, Brazil, 2000, pp. 1–8.

  22. M.H. Khedr and M.H. Abdel-Khalik: Fizykochemiczne Problemy Mineralurgii, 1996, vol. 30, pp. 135-44.

    Google Scholar 

  23. A.A. El-Geassy, M.I. Nasr, A.A. Omar, and E.A. Mousa: ISIJ Int., 2008, vol. 48, pp. 1359-67.

    Article  Google Scholar 

  24. A.A. El-Geassy, M.I. Nasr, and E.A. Mousa: Steel Res. Int., 2010, vol. 81, pp. 178-85.

    Article  Google Scholar 

  25. E.A. Mousa, D. Senk, and A. Babich: Steel Res. Int., 2010, vol. 81, pp. 706-715.

    Article  Google Scholar 

  26. E.A. Mousa, D. Senk, and A. Babich: Proc., METEC InSteelCon, ECIC, VDEh, Düsseldorf, Germany, 2011, Session 4, pp. 1–8.

  27. S. Jasieńska, J. Orewezyk, A. Lędzki, and J. Durak: Solid State Ionics, 1999, vol. 117, pp. 129-43.

    Article  Google Scholar 

  28. A. Ghosh and A. Chatterjee: Ironmaking and Steelmaking Theory and Practice, PHI Learning Private Limited, New Delhi, India, 2008.

    Google Scholar 

  29. C.C. Massieon, A.H. Cutler, and F. Shadman: Ind. Eng. Chem. Res., 1993, vol. 32, pp. 1239-44.

    Article  Google Scholar 

  30. W.H. Kim, Y.S. Lee, I.K. Suh, and D.J. Min: ISIJ Int., 2012, vol. 52, pp. 1463-71.

    Article  Google Scholar 

  31. L.V. Bogdandy and H.J. Engell: The Reduction of Iron Ores, Springer Verlag, Düsseldorf, Germany, 1971.

    Book  Google Scholar 

  32. E.T. Turkdogan and J.V. Vinters: Metall. Trans., 1971, vol. 2B, pp. 3175-88.

    Article  Google Scholar 

  33. E.T. Turkdogan, R.G. Olsson, and J.V. Vinters: Metall. Trans., 1971, vol. 2B, pp. 3189-96.

    Article  Google Scholar 

  34. E.T. Turkdogan and J.V. Vinters: Metall. Trans, 1972, vol. 3B, pp. 1561-74.

    Article  Google Scholar 

  35. Y.S. Karabasol and V.M. Chizhikova: Physico-Chemistry of Iron Oxide Reduction from Iron Oxides (in Russian), Metallurgie, Moscow, Russia, 1986.

  36. V.I. Zenkov and V.V. Pasichnyi: Powder Metall. Met. Ceram., 2010, vol. 49, pp. 231-37.

    Article  Google Scholar 

  37. D. Ghosh, A.K. Roy, and A. Ghosh: Trans. ISIJ, 1986, vol. 26, pp. 186-93.

    Article  Google Scholar 

  38. J.J. Spivey and T. Inui: Catalysis, 2002, vol. 16, pp. 133-54.

    Article  Google Scholar 

  39. J. Shen, Z.D. Liu, Z.Z. Wang, H.W. Yang, and R.S. Yao: Green Energy, 2008, vol. 5, pp. 413-21.

    Article  Google Scholar 

  40. W.H. Chen, M.R. Lin, A.B. Yu, S.W. Du, and T.S. Leu: Int. J. Hydrogen Energy, 2012, vol. 37, pp. 11748-58.

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Mr. Volodymyr Omelchenko for his cooperation and participation in the experiments of the current work. The authors gratefully acknowledge the financial support provided to the corresponding author of this research by Alexander von Humboldt Foundation in Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elsayed Abdelhady Mousa.

Additional information

Manuscript submitted June 26, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mousa, E.A., Babich, A. & Senk, D. Utilization of Coke Oven Gas and Converter Gas in the Direct Reduction of Lump Iron Ore. Metall Mater Trans B 45, 617–628 (2014). https://doi.org/10.1007/s11663-013-9978-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-013-9978-6

Keywords

Navigation