Skip to main content
Log in

Interdendritic Strain and Macrosegregation-Coupled Phenomena for Interdendritic Crack Formation in Direct-Chill Cast Sheet Ingots

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

In a study of the early stages of dendritic solidification in the direct-chill cast sheet ingots, the coupled effect of interdendritic strain and macrosegregation on the interdendritic cracks formation in dendritic equiaxed structure has been investigated by the metallographic study of ingot samples and by performing a set of mathematical analyses for AA-6061 and AA-1050 aluminum alloys. The metallographic investigation contains microstructure examinations and macrosegregation measurements of collected samples from plant trials. The mathematical analysis consists of a two-dimensional (2-D) fluid flow, heat flow, interdendritic strain, and macrosegregation-coupled model. Also, a simple approach to measure interdendritic crack has been developed based on the accumulative interdendritic strain criterion, local dendritic phases, and the crystal distortion correlation factor resulting from steep positive local segregation. The model predications have clarified the effect of high positive macrosegregation on the surface and subsurface interdendritic crack formation. It has been revealed that interdendritic strain starts to generate just below the liquidus temperature, resulting from shrinkage of liquid→solid phase transformation and contraction of dendritic solid in the incoherent mushy region. In this region, the coupled effect of the shrinkage/contraction mechanism increases the interdendritic distances between equiaxed crystals and the interdendritic crack begins to nucleate. Subsequently, in the coherent mushy region, the different interdendritic strain sources start to affect significantly the distances between equiaxed crystals in a diverse way, and therefore, the final morphology of interdendritic crack begins to form. The mechanism of interdendritic crack formation during dendritic equiaxed structure solidification and the possible solutions to this problem are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Abbreviations

A :

elementary area (m2)

a, b:

constants in Eq. [10]

C p :

specific heat (kJ/kgK)

E η :

volumetric energy (W/s m3)

E :

modulus of elasticity (N/m2)

F c :

crystal distortion correlation factor

h(t):

heat transfer coefficient at time t (W/m2K)

H :

enthalpy (kJ/kg)

\( \bar{H} \) :

average enthalpy (kJ/kg)

k c :

coefficient in Eq. [8]

K e :

equilibrium partition coefficient

l coh :

coherent solid shell thickness (mm)

L s :

slab width (mm)

L :

latent heat of fusion (kJ/kg)

M :

bending moment (Nm)

n :

number of measured fields

P :

pressure (N/m2)

Q ϕ , Q x :

surface and x isotherm heat fluxes (kW/m2)

P w :

ferrostatic pressure (N/m2)

R d :

radius of equiaxed crystal (m)

S j :

macrosegregation ratio of element j

S meaj :

actual measured composition of j element (wt pct)

S oj :

nominal composition of j element (wt pct)

S pj :

predicted composition of element j (wt pct)

S v :

grain boundary surface area per unit volume (1/m)

t :

time (s)

t f :

solidification time (s)

T :

temperature (°C)

T ϕ , T w :

ingot surface and cooling fluid temperature (°C)

u :

local interdendritic liquid velocity (m/s)

V :

volume (m3)

V a :

dendritic growth rate (m/s)

x, y, z :

Cartesian coordinates (m)

\( \bar{X} \) :

mean measurements value (μm)

X i :

individual measurement value (μm)

α :

thermal expansion coefficient (1/°C)

\( \alpha^{*} \) :

instantaneous diffusion parameter (m2/s)

\( \varepsilon \) :

strain

\( \sum {\varepsilon_{i} } \) :

total strain per unit volume i

ϕ 1 :

grain size (μm)

K :

mushy permeability

η :

coordinate for local energy

λ :

thermal conductivity (W/m2K)

\( \rho \) :

density (kg/m3)

\( \bar{\rho } \) :

average density (kg/m3)

\( \sigma \) :

standard deviation (μm)

τ :

stress (N/m2)

ξ :

bulging (mm)

Δ :

infinitesimal element of length or time

acc:

accumulative

acc*:

interdendritic accumulative

c:

creep

eff:

effective

e:

elastic

l:

liquid

m:

mechanical

m k :

exponent in Eqs. [20] and [21] of solid phase k

T ph :

thermometallurgical

tot:

total

coh:

coherent

conv:

convection stream

eff:

effective

Int:

interdendritic liquid

l:

liquid

m:

melting

s:

solid

References

  1. J. Campbell (1991) Castings. Butterworth Heinemann, London, UK.

    Google Scholar 

  2. M.L. Nerberg: Ph.D. Dissertation, University of Oslo, Oslo, Norway, 1991.

  3. W.S Pellini: Foundry, 1952, vol. 80, pp. 125–33, 192–99.

  4. J.A. Spittle and A.A. Cushway: Met. Technol., 1983, vol. 10, pp. 6–13.

    CAS  Google Scholar 

  5. D. Warrington and D.G. McCartney: Cast Met., 1989, vol. 2, pp. 134–43.

    Google Scholar 

  6. K. Kinoshita, G. Kasai, and T. Emi: Proc. Solidification and Casting of Metals, TMS, Warrendale, PA, 1979, pp. 268–74.

    Google Scholar 

  7. Y.F. Guven and J.D. Hunt: Cast. Met. 1988, vol. 1, pp. 104–11.

    Google Scholar 

  8. T.W. Clyne and G.J. Davies: Br. Foundrymen, 1981, vol. 74, pp. 65–73.

    Google Scholar 

  9. U. Feurer (1976). Gieβerei-Forschung 28:75–80.

    CAS  Google Scholar 

  10. M. Rappaz, J.-M. Drezet, and M. Gremaud: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 449–55.

    Article  CAS  Google Scholar 

  11. J.-M. Drezet and M. Rappaz: 1 st ESAFORM Conf. on Material Froming, J.L. Chenot, J.F. Agassant, P. Montmitonnet, B. Vergnes, and N. Billon, eds., ESAFORM, Sophia Antipolis, France, 1998, pp. 49–52.

  12. G.K. Sigworth: AFS Trans., 1999, vol. 106, pp. 1053–69.

    Google Scholar 

  13. M. El-Bealy and B.G. Thomas: Proc. 54 th Electric Furnace Conf., 1996, Dallas, TX, pp. 565–79.

  14. M.O. El-Bealy: Proc. TMS Conf., 2001, San Diego, CA, pp. 683–92.

  15. M. El-Bealy: Metall. Mater. Trans. B, 2000, vol. 31B, pp. 331–43, 345–55.

  16. M.O. El-Bealy and H.A. El-Emairy: Proc.Light Metals” TMS-AnnualMeeting “Cast Shop Technology”, 2007, Orlando, FL, pp. 765–74.

  17. T.L. Finn, M.G. Chu, and W.D. Bennon: Micro/Macro Scale Phenomena in Solidification, C. Beckermann, L.A. Bertram, S.J. Pien, and R.E. Smelser, eds., ASME, New York, NY, 1992, HTD-vol. 218/AMD-vol. 139, pp. 17–26.

  18. K. Buxmann and E. Gold: J. Metals, 1982, vol. 4, pp. 28–34.

    Google Scholar 

  19. C.A. Muojekwu, I.V. Samarasekera, and J.K. Brimacombe: Metall. Mater. Trans. B, 1995, vol. 26B, pp. 316–82.

    Google Scholar 

  20. W. Schneider and E.K. Jensen: Light Metals, C.M. Bickert, ed., TMS-AIME,Warrendale, PA, 1990, pp. 931–36.

  21. E.K. Jensen and W. Schneider: Light Metals, C.M. Bickert, ed., TMS-AIME, Warrendale, PA, 1990, pp. 937–43.

  22. J. Ni and C. Beckermann: Metal. Trans. B, 1991, vol. 22B, pp. 349–61.

    Article  CAS  Google Scholar 

  23. M.O. El-Bealy: Light Metals, M. Cross, J.W. Evans, and C. Bailey, eds., TMS-AIME, Warrendale, PA, 2010, pp. 683–88.

  24. M.O. El-Bealy: Can. Metall. Q., 2010, vol. 49, pp. 47–62.

    CAS  Google Scholar 

  25. M. El-Bealy: Scand. J. Metall., 1995, vol. 24 (1, 2), pp. 63–80, 106–20.

  26. L.H. Van Vlack: A Textbook of Materials Technology, 1973, Addison-Wesley, Boston, MA.

    Google Scholar 

  27. Metals Handbook, ASM International, Materials Park, OH, 1990, vol. 2, pp. 152–77.

  28. R. DeHoff and F. Rhines: Mater. Sci. Eng., 1968, McGraw-Hill, Columbus, OH.

    Google Scholar 

  29. ASTM Grain size: Metallography, 1987, vol. 35, pp. 18–19.

  30. C.Y. Wang and C. Beckermann: Metal. Trans. A, 1993, vol. 24A, pp. 2787–2802.

    CAS  Google Scholar 

  31. D.J. Lahaie and M. Bouchard: Metall. Mater. Trans. B, 2001, vol. 32B, pp. 697–705.

    Article  CAS  Google Scholar 

  32. C. Charbon and M. Rappaz: Acta Mater, 1996, vol. 44, pp. 2663–68.

    Article  CAS  Google Scholar 

  33. M.C. Flemings and G.E. Nereo: Trans. TMS-AIME, 1967, vol. 239, pp. 1449–61.

    CAS  Google Scholar 

  34. S. Vernède and M. Rappaz: Phil. Mag, 2006, vol. 86, no. 23, pp. 3779–94.

    Article  Google Scholar 

  35. V. Mathier, A. Jacot, and M. Rappaz: Mod. Sim. Mat. Sci. Eng., 2004, vol. 12, pp. 479–90.

    Article  CAS  Google Scholar 

  36. H.J. Thevik, A. Mo, and T. Rusten: Metall. Mater. Trans. B, 1999, vol. 30B, pp. 135–42.

    Article  CAS  Google Scholar 

  37. I.H. Hove, B. Andersson, and D. Voss: Proc. 3 rd Conf. on Aluminum Alloys-TheirPhysical and Mechanical Properties, L. Arnberg, O. Lohne, E. Nes, and N. Ryum, eds., Trondheim, Norway, 1992, vol. 2, pp. 264–69.

  38. M.O. El-Bealy and R.M. Hammouda: Steel Res. Int., 2007, vol. 78,pp. 602–11.

    CAS  Google Scholar 

  39. D. Mortensen: Metall. Mater. Trans. B, 1999, vol. 30B, pp. 119–33.

    Article  CAS  Google Scholar 

  40. D.R. Poirier, P.J. Nandapurkar, and S. Ganesan: 1991, Metall. Trans. B, vol. 22B,pp. 889–900.

    Article  CAS  Google Scholar 

  41. M.O. El-Bealy: Metall. Mater. Trans. B, 2011, vol. 43B, pp. 1–17.

    Google Scholar 

  42. C. Li and B.G. Thomas: Metall. Mater. Trans. B, 2004, vol. 35B, pp. 1151–72.

    Article  CAS  Google Scholar 

  43. A.J. Williams, T.N. Croft, and M. Cross: Metall. Mater. Trans. B, 2003, vol. 34B, pp. 727–34.

    Article  CAS  Google Scholar 

  44. M.M. Hamdi, S. Benum, D. Mortensen, H.G. Fjaer, and J.M. Drezet: Metall. Mater. Trans.A, 2003, vol. 34A, pp. 1941–52.

    Article  Google Scholar 

  45. T.S. Piwonka and M.C. Flemings: Trans. AIME, 1966, vol. 236, pp. 1157–65.

    CAS  Google Scholar 

  46. A.V. Reddy and C. Beckermann: Metall. Mater. Trans. B, 1997, vol. 28B, pp. 479–89.

    Article  CAS  Google Scholar 

  47. G.H. Geiger and D.R. Poirier: Transport Phenomena in Metallurgy, Addision-Wesley, Reading, MA, 1973, pp. 92.

    Google Scholar 

  48. E. Scheil: Metallforschung, 1947, vol. 2, p. 69.

    CAS  Google Scholar 

  49. A. Mo, T.E. Johnsen, B.R. Henriksen, E.K. Jensen, and O.R. Myhr: Proc. “Light Metals” TMS-Annual Meeting “Cast Shop Technology”, 1994, U. Mannweiler, ed., TMS-AIME, pp. 889–96.

  50. G. Chai, L. Backnart, T. Rϕlland, and L. Arnberg: Metall. Mater. Trans. A., 1995, vol. 26A,pp. 965–70.

    Article  CAS  Google Scholar 

  51. M.C. Flemings: Solidification Processing, M.B. Bever, M.E. Shank, C.V. Wert, and R.F. Mehl, eds., McGraw-Hill, New York, NY, 1974, pp. 154–57.

  52. J.O. Kristiansson: J. Thermal Stresses, 1982, vol. 5, pp. 315–30.

    Article  Google Scholar 

  53. K. Miyazawa and K. Schwerdedteger: Ironmaking Steelmaking, 1979, vol.6, pp. 68–74.

    Google Scholar 

  54. M.O. El-Bealy (1997). Can. Metall. Q. 36(1):49–56.

    Article  CAS  Google Scholar 

  55. M. Chakraborti: Strength of Materials, 2001, S.K. Kataria & Sons, Nai Sarak, Delhi.

  56. M.F. Spotts and T.E. Shoup: Design of Machine Elements, 7th ed., Prentice-Hall, Upper Saddle River, NJ, 1998.

  57. W.D. Bennon and F.P. Incropera Int. J. Heat Trans Mass Trans.,1987, vol. 30, no. 10, pp. 2161–70.

    Article  CAS  Google Scholar 

  58. W.D. Bennon and F.P. Incropera: Metall. Trans. B., 1987, vol. 18B, pp. 611–16.

    Article  CAS  Google Scholar 

  59. V.R. Voller, A.D. Brent, and C. Prakash: Int. J. Heat Mass Trans., 1989, vol. 32, pp. 1719–32.

    Article  CAS  Google Scholar 

  60. S. Gansesan and D.R. Poirier: Metall. Trans. B, 1990, vol. 21B, pp. 173–81.

    Article  Google Scholar 

  61. R. Viskanta: JSME International J., 1990, vol. 33, no. 3, pp. 409–23.

    CAS  Google Scholar 

  62. P.J. Prescott, F.P. Incropera, and W.D. Bennon: Int. J. Heat Trans. Mass Trans., 1991, vol. 34, no. 9, pp. 2351–59.

    Article  CAS  Google Scholar 

  63. J. Ni and C. Beckermann: Metall. Trans. B, 1991, vol. 22B, pp. 349–61.

    Article  CAS  Google Scholar 

  64. Q.Z. Diao and H.L. Tsai: Metall. Trans. A, 1993, vol. 24A, pp. 963–73.

    CAS  Google Scholar 

  65. M.O. El-Bealy: Ph.D Dissertation, Royal Institute of Technology, Stockholm, Sweden, 1995.

  66. M. Bamberger, B.Z. Weiss, and M.M. Stupel: Mater. Sci. Technol., 1987, vol. 3, pp. 49–56.

    Article  CAS  Google Scholar 

  67. K. Ho and R.D. Pehlke: Metall. Trans. B, 1985, vol. 16B, pp. 585–94.

    Article  CAS  Google Scholar 

  68. L.D.J. Sully: AFS Trans., 1976, vol. 84, pp. 735–44.

    CAS  Google Scholar 

  69. N.A. Shah and J.J. Moore: Metall. Trans. B, 1989, vol. 20B, pp. 893–910.

    Article  CAS  Google Scholar 

  70. T.S. Prasanna Kumar, K. Narayan Prabhu Metall. Trans. B, 1991, vol. 22B,pp. 717–27.

    Article  Google Scholar 

  71. M. El-Bealy and H. Fredriksson: Scand. J. Metall., 1994, vol. 23, pp. 140–50.

    CAS  Google Scholar 

  72. M.O. El-Bealy: Proc. 6th European Conference on Continuous Casting, 2008, Riccione, Italy.

  73. G. Dahlquist and A. Bjorck: Numerical Methods, Prentice-Hall Inc., Englewood Cliffs, NJ, 1974, p. 277.

  74. J.-M. Drezet and M. Rappaz: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 3214–25.

    Article  CAS  Google Scholar 

  75. L. Ohm and S. Engler: Metall. Trans., 1989, vol. 43, pp. 520–24.

    CAS  Google Scholar 

  76. VDI-Wärmeatlas, 4. Auflage, VDI Verlag GmbH, Düsseldorf, 1984.

  77. M.O. El-Bealy: Proc. Aluminum Two Thousand Congress Aluminum 2000-2011 Conference, Bologna, Italy.

  78. N.A. El-Mahallawy and A.M. Assar: J. Mater. Sci., 1991, vol. 26, pp. 1729–33.

    Article  CAS  Google Scholar 

  79. S. Vernéde, P. Jarry, and M. Rappaz: Acta Metall., 2006, vol. 54, pp. 4023–34.

    Google Scholar 

  80. L. Erickson: Scand. J. Metall.,1977, vol. 6, pp. 116–24.

    Google Scholar 

  81. T. Bourgeois: Private Communications, Alcan International Limited, Arivda R & D Centre, September 6th, 1996, Jonquère, Québec, Canada.

Download references

Acknowledgments

The author wishes to express his sincere gratitude to Prof. Merton Flemings, former Head of the Department of Materials Science and Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, for his early pioneering work in the fields of segregation and solidification cracks, which guided the author to several facts in these fields. Also, he offers his sincere gratitude to Prof. Hasse Fredriksson, Department of Materials Science and Engineering, Royal Institute of Technology, Institute of Materials Processing, Stockholm, Sweden, for his considerable supervision, guidance, helpful discussions throughout the work, and valuable assistance. The author aspirates the previous help and useful discussions from Prof. Michael Rappaz, Laboratoire de Metallurgie Physique, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland, and Prof. David Poirier, Department of Materials Science and Engineering, University of Arizona, Tucson, AZ. The author is also especially grateful for the financial support of Companies’ Chair of the Swedish Iron Masters Association, Stockholm, Sweden. He is also grateful to Egyptian Copper Works, Hagar El-Nawatia, Alexandria, Egypt, who kindly supplied him with ingot samples. The author’s sincere gratitude is due to the assistances in metallurgical laboratories, Faculty of Engineering, Ain Shams University, Cairo, Egypt.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mostafa Omar EL-Bealy.

Additional information

Manuscript submitted August 29, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

EL-Bealy, M.O. Interdendritic Strain and Macrosegregation-Coupled Phenomena for Interdendritic Crack Formation in Direct-Chill Cast Sheet Ingots. Metall Mater Trans B 43, 635–656 (2012). https://doi.org/10.1007/s11663-011-9616-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-011-9616-0

Keywords

Navigation