Skip to main content
Log in

Computational Fluid Dynamics Modeling of Macrosegregation and Shrinkage in Large-Diameter Steel Roll Castings

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Minimizing macrosegregation and shrinkage in large cast steel mill rolls challenges the limits of commercial foundry technology. Processing improvements have been achieved by balancing the total heat input of casting with the rate of heat extraction from the surface of the roll in the mold. A submerged entry nozzle (SEN) technique that injects a dilute alloy addition through a nozzle into the partially solidified net-shaped roll ingot can mitigate both centerline segregation and midradius channel segregate conditions. The objective of this study is to optimize the melt chemistry, solidification, and SEN conditions to minimize centerline and midradius segregation, and then to improve the quality of the transition region between the outer shell and the diluted interior region. To accomplish this objective, a multiphase, multicomponent computational fluid dynamics (CFD) code was developed for studying the macrosegregation and shrinkage under various casting conditions for a 65-ton, 1.6-m-diameter steel roll. The developed CFD framework consists of solving for the volume fraction of phases (air and steel mixture), temperature, flow, and solute balance in multicomponent alloy systems. Thermal boundary conditions were determined by measuring the temperature in the mold at several radial depths and height locations. The thermophysical properties including viscosity of steel alloy used in the simulations are functions of temperature. The steel mixture in the species-transfer model consists of the following elements: Fe, Mn, Si, S, P, C, Cr, Mo, and V. Density and liquidus temperature of the steel mixture are locally affected by the segregation of these elements. The model predictions were validated against macrosegregation measured from pieces cut from the 65-ton roll. The effect of key processing parameters such as melt composition and superheat of both the shell and the dilute interior alloy are addressed. The influence of mold type and thickness on macrosegregation and shrinkage also are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. D.M. Stefanescu: Science and Engineering of Casting Solidification, Springer, New York, NY, 2002.

  2. W.D. Bennon and F.P. Incropera: Int. J. Heat Mass Tran., 1987, vol. 30, pp. 2161-71.

    Article  CAS  Google Scholar 

  3. S.D. Fellicelli, J.C. Heinrich, and D.R. Poirier: Metall. Trans. B, 1991, vol. 22B, pp. 847-59.

    Article  Google Scholar 

  4. Q.Z. Diao and H.L. Tsai: Metall. Trans. A, 1993, vol. 24A, pp. 963-73.

    CAS  Google Scholar 

  5. M.C. Schneider and C. Beckermann: Metall. Mater. Trans. A, 1995, vol. 26A, pp. 2373-88.

    Article  CAS  Google Scholar 

  6. S. Chang and D.M. Stefanescu: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 2708-21.

    Article  CAS  Google Scholar 

  7. C.M. Oldenburg and F.J. Spera: Numer. Heat Tran. B, 1992, vol. 21, pp. 217-29.

    Article  CAS  Google Scholar 

  8. M.C. Fleming and G.E. Nereo: Trans. TMS-AIME, 1967, vol. 239, pp. 1449-61.

    Google Scholar 

  9. G.H. Gulliver: J. Inst. Met., 1913, vol. 9, pp. 120-57.

    Google Scholar 

  10. E. Scheil: Z. Metalkde, 1942, vol. 34, pp. 70–72.

    Google Scholar 

  11. L. Nastac: Modeling and Simulation of Microstructure Evolution in Solidifying Alloys, Springer, New York, NY, 2004.

  12. L. Nastac and D.M. Stefanescu: Metall. Trans. A, 1993, vol. 24A, pp. 2107-18.

    CAS  Google Scholar 

  13. T. Clyne and W. Kurz: Metall. Trans. A, 1981, vol. 12A, pp. 965-71.

    Google Scholar 

  14. S. Ganguly and S. Chakraborty: Metall. Mater. Trans. B, 2006, vol. 37B, pp. 143–45.

    Article  CAS  Google Scholar 

  15. P.J. Prescott and F.P. Incropera: J. Heat Tran., 1994, vol. 116, pp. 735-49.

    Article  CAS  Google Scholar 

  16. C. Beckermann and R. Viskanta: Physicochemical Hydrodynamics, 1998, vol. 10, pp. 195-213.

    Google Scholar 

  17. M. Rappaz and V. Voller: Metall. Trans. A, 1990, vol. 21A, pp. 749-53.

    CAS  Google Scholar 

  18. L. Nastac: J. Cryst. Growth, 1998, vol. 193, pp. 271-84.

    Article  CAS  Google Scholar 

  19. L. Nastac: Scripta Mater., 1998, vol. 39, pp. 985–89.

    Article  CAS  Google Scholar 

  20. L. Nastac, S. Sundarraj, and S. Sen: Thermosolutal Effects on Columnar-to-Equiaxed Transition during Solidification of Castings, NASA Proposal #NRA-96-HEDS-02, 1997.

  21. L. Nastac: Numer. Heat Tran., 1999, vol. 35A, pp. 173-89.

    Article  Google Scholar 

Download references

Acknowledgments

The author would like to acknowledge Whemco, Inc. for sponsoring the research program and Mr. Kevin Marsden for his useful comments in writing this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurentiu Nastac.

Additional information

Manuscript submitted March 24, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nastac, L. Computational Fluid Dynamics Modeling of Macrosegregation and Shrinkage in Large-Diameter Steel Roll Castings. Metall Mater Trans B 42, 1231–1243 (2011). https://doi.org/10.1007/s11663-011-9537-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-011-9537-y

Keywords

Navigation