Skip to main content
Log in

A generalized formulation of latent heat functions in enthalpy-based mathematical models for multicomponent alloy solidification systems

  • Communications
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

A systematic and generalized procedure for mathematical formulation of latent heat functions, as applicable for enthalpy-based solidification modeling of multicomponent alloy systems, is developed. The method uses a metallurgically appropriate thermo-solutal coupling strategy, in conjunction with updating of respective phase fractions, in order to obtain solutions of field variables that are consistent with the pertinent phase-change morphology. The present approach can model the solidification of multicomponent alloys for a wide range of local scale diffusion behavior of the constituent species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V.R. Voller, M. Cross, and N.C. Markatos: Int. J. Num. Methods Eng., 1987, vol. 24, pp. 271–84.

    Article  Google Scholar 

  2. A. Gadgil and D. Gobin: J. Heat Transfer, 1984, vol. 106, pp. 20–26.

    Article  Google Scholar 

  3. V.R. Voller and C. Prakash: Int. J. Heat Mass Transfer, 1987, vol. 30, pp. 1709–19.

    Article  CAS  Google Scholar 

  4. V.R. Voller, A.D. Brent, and C. Prakash: Int. J. Heat Mass Transfer, 1989, vol. 32, pp. 1719–31.

    Article  CAS  Google Scholar 

  5. M.R. Aboutealebi, M. Hasan, and R.I.L. Guthrie: Metall. Mater. Trans. B, 1995, vol. 26B, pp. 731–44.

    Google Scholar 

  6. S. Chakraborty and P. Dutta: Int. J. Heat Mass Transfer, 2003, vol. 46, pp. 2115–34.

    Article  CAS  Google Scholar 

  7. S. Chakraborty and P. Dutta: Metall. Mater. Trans. B, 2001, vol. 32B, pp. 562–64.

    CAS  Google Scholar 

  8. M.C. Schneider and C. Beckermann: Metall. Mater. Trans. A, 1995, vol. 26A, pp. 2373–88.

    CAS  Google Scholar 

  9. M.J.M. Krane, F.P. Incropera, and D.R. Gaskell: Int. J. Heat Mass Transfer, 1997, vol. 40, pp. 3827–35.

    Article  CAS  Google Scholar 

  10. M.J.M. Krane and F.P. Incropera: Int. J. Heat Mass Transfer, 1997, vol. 40, pp. 3837–47.

    Article  CAS  Google Scholar 

  11. A.D. Brent, V.R. Voller, and K.J. Reid: Num. Heat Transfer, 1988, vol. 13, pp. 297–318.

    Google Scholar 

  12. S.V. Patankar: Numerical Heat Transfer and Fluid Flow, Hemisphere, Washington, DC, 1980.

    Google Scholar 

  13. C.R. Swaminathan and V.R. Voller: Int. J. Heat Mass Transfer, 1997, vol. 40, pp. 2859–68.

    Article  CAS  Google Scholar 

  14. W. Kurz and D.J. Fisher: Fundamentals of Solidification, Trans Tech Publications, Aedermannsdorf, Switzerland, 1992, pp. 280–88.

    Google Scholar 

  15. T.W. Clyne and W. Kurz: Metall. Mater. Trans. A, 1981, vol. 12A, pp. 965–71.

    Google Scholar 

  16. J.D. Chung, J.S. Lee, M. Choi, and H. Yoo: Int. J. Heat Mass Transfer, 2001, vol. 44, pp. 2483–92.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ganguly, S., Chakraborty, S. A generalized formulation of latent heat functions in enthalpy-based mathematical models for multicomponent alloy solidification systems. Metall Mater Trans B 37, 143–145 (2006). https://doi.org/10.1007/s11663-006-0094-8

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-006-0094-8

Keywords

Navigation