Skip to main content
Log in

Electronic Transport and Thermodynamic Properties of Binary Liquid Alloy: Ab Initio Approach

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

In this article, the Harrison’s first principle pseudopotential technique has been employed to study the electrical resistivity and other physical properties (i.e., the Knight shift, Fermi energy, and electronic density of states) of Zintl liquid alloy. Because there is a possibility of formation of a compound in the system, as inferred from the graph of a partial structure factor of unlike pairs of atom, we also have computed the thermodynamic as well as the electron transport properties of this system, taking the complex formation model into account. Useful interpretation based on inferences has been withdrawn.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. W. Choi, J.Y. Lee, B.H. Jung, and H.S. Lim: J. Power Sources, 2004, vol. 136, no. 1, p. 154.

    Article  CAS  Google Scholar 

  2. M. Mouyane, P.E. Lippens, M. Womes, B. Ducourant, J. Olivier-Fourcade, and J.C. Jumas: Hyperfine Interactions, 2008, vol. 187, nos. 1–3, pp. 27-34.

    Article  CAS  ADS  Google Scholar 

  3. B. Veeraraghavan, A. Dorsirajan, B. Haran, B. Pupov, and R. Guldutti: J. Electrochem. Soc., 2002, vol. 149, no. 6, pp. A675-81.

    Article  CAS  Google Scholar 

  4. Y. Satoshi, O.I. Takno, and H. Satoru: J. Nucl. Sci. Tech., 2000, vol. 37, no. 10, pp. 919–23.

    Article  Google Scholar 

  5. O. Genser and J. Hafner: Phys. Rev. B, 2001, vol. 63, p. 144204.

    Article  ADS  Google Scholar 

  6. Y. Kang and T. Terai: J. Nucl. Mater, 2004, vol. 3239-333, no. 2, pp. 1318-21.

    Article  Google Scholar 

  7. S. Jahn, J.B Suck, and M.M. Koza: J. Non Cryst. Sol., 2007, vol. 353, p. 3145.

    Article  CAS  ADS  Google Scholar 

  8. A. Thakur and P.K. Ahluwalia: Physica B, 2006, vol. 373, p. 163.

    Article  CAS  ADS  Google Scholar 

  9. M. Scone, R. Kaschner, and G. Seifert: J. Phys.: Cond. Matt., 1995, vol. 7, p. 19.

    Article  ADS  Google Scholar 

  10. O. Akinlade: Phys. Chem. Liq., 1995, vol. 29, p. 9.

    Article  CAS  Google Scholar 

  11. H. Schaefer, B. Eisenmann, and W. Muller: Angew. Chem., 1973, vol. 85, p. 742.

    Article  CAS  Google Scholar 

  12. W. van der Lugt: J. Phys. Condens. Matter, 1996, vol. 8, p. 6115.

    Article  ADS  Google Scholar 

  13. N.W. Ashcroft and D.C. Langreth: Phys. Rev., 1967, vol. 155, p. 682.

    Article  CAS  ADS  Google Scholar 

  14. J.E. Enderby and D.M. North: Phys. Chem. Liq., 1968, vol. 1, p. 1.

    Article  CAS  Google Scholar 

  15. T.E. Faber and J.M. Ziman: Phil. Mag., 1965, vol. 11, p. 153.

    Article  CAS  ADS  Google Scholar 

  16. R. Hultgren, P.D. Desai, D.T. Hawkins, M. Gleiser, and K.K. Kelley: Selected Values of the Thermodynamic Properties of Binary Alloys, American Society of Metals, Metals Park, Ohio, 1973.

    Google Scholar 

  17. W.A. Harrison: Pseudopotential in the Theory of Metals, Benjamin Inc., New York, NY, 1966.

    Google Scholar 

  18. J.M. Ziman: Phil. Mag., 1961, vol. 6, p. 1013.

    Article  MATH  CAS  ADS  Google Scholar 

  19. S.D. Mahanti and T.P. Das: Magnetic Resonance, Plenum Press, New York, NY, 1970.

    Google Scholar 

  20. W.D. Knight: Sol. St. Phys., Eds. F. Seitz and D. Turnbull, Academy Press, New York, NY, 1956.

    Google Scholar 

  21. J.C. Slater: Phys. Rev., 1951, vol. 81, p. 385.

    Article  MATH  CAS  ADS  Google Scholar 

  22. C.G. Bradley, T.E. Faber, E.G. Wilson, and J.M. Ziman: Phil. Mag., 1962, vol. 7, p. 865.

    Article  CAS  ADS  Google Scholar 

  23. B. Mishra, L.K. Das, T. Sahu, G.S. Tripathi, and P.K. Mishra: J. Phys. Cond. Matt., 1990, vol. 2, p. 9891.

    Article  ADS  Google Scholar 

  24. G.S. Tripathi, C.M. Mishra, P. Tripathi, and P.K. Mishra: Phys. Rev. B, 1989, vol. 39, p. 94.

    Article  ADS  Google Scholar 

  25. G.E. Pake: Sol. St. Phys, Eds. F. Seitz and D. Turnbull, Academy Press, New York, NY, 1956.

    Google Scholar 

  26. K. Furuya, K. Ogawa, Y. Mineo, A. Matsufiji, J. Okude, and T. Erata: J. Phys. Condens. Matter, 2001, vol. 13, pp. 3519-32.

    Article  CAS  ADS  Google Scholar 

  27. T. Schneider and E. Stoll: Adv. Phys., 1967, vol. 16, p. 731.

    Article  ADS  Google Scholar 

  28. M. Kuroha and K. Suziki: Phys. Lett., 1974, vol. 47A, p. 329.

    ADS  Google Scholar 

  29. J. Thakur: Phys. Stat. Sol., 1980, vol. 99.

  30. A.B. Bhatia and W.H. Hargrove: Phys. Rev. B, 1974, vol. 10, p. 3186.

    Article  CAS  ADS  Google Scholar 

  31. A.B. Bhatia, Proc. 3 rd Int. Conf. on Liquid Metals, Bristol, UK, 1977, p. 21.

  32. R.N. Singh: Can. J. Phys., 1987, vol. 65, p. 309.

    CAS  ADS  Google Scholar 

  33. R.N. Singh, I.S. Jha, and D.K. Pandey: J. Phys. Cond. Matt., 1993, vol. 5, p. 2469.

    Article  CAS  ADS  Google Scholar 

  34. A. Kumar, S.M. Rafique, N. Jha, and A.K. Mishra: Physica B, 2005, vol. 357, pp. 445-51.

    CAS  ADS  Google Scholar 

  35. A. Kumar, S.M. Rafique, and N. Jha: Physica B, 2006, vol. 373, pp. 169-76.

    Article  CAS  ADS  Google Scholar 

  36. A. Kumar, S.M. Rafique, N. Jha, and T.P. Sinha: Physica B, 2009, vol. 404, pp. 1933-39.

    Article  CAS  ADS  Google Scholar 

  37. H.C. Longuet-Higgins: Proc. Roy. Soc. A, 1951, vol. 205, p. 247.

    Article  MATH  CAS  MathSciNet  ADS  Google Scholar 

  38. O. Ese and J.A. Reissland: J. Phys. F., 1973, vol. 3, p. 2066.

    Article  CAS  ADS  Google Scholar 

  39. P. Vashishta and K.S. Singwi: Phys. Rev. B, 1972, vol. 6, p. 875.

    Article  CAS  ADS  Google Scholar 

  40. K. Hiroike: J. Phys. Soc. Japan, 1969, vol. 27, p. 1415.

    Article  ADS  Google Scholar 

  41. K. Hoshino: J. Phys. F, 1983, vol. 13, p. 1981.

    Article  CAS  ADS  Google Scholar 

  42. V.T. Nguyen and J.E. Enderby: Phil. Mag., 1977, vol. 35, p. 1013.

    Article  CAS  ADS  Google Scholar 

  43. F.W. Dorn and W. Klemm: Z. Anorg. Allg. Chem., 1961, vol. 309, p. 189.

    Article  CAS  Google Scholar 

  44. Y. Waseda: Inst. Phys. Conf. Ser., 1970, vol. 30, p. 230.

    Google Scholar 

  45. H. Reiter, H. Ruppersberg, and W. Speicher: Inst. Phys. Conf. Ser., 1970, vol. 30, p. 133.

    Google Scholar 

Download references

Acknowledgments

The financial support rendered by the DST, CSIR, UGC, New Delhi, and DAE-BRNS, Mumbai, is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashwani Kumar.

Additional information

Manuscript submitted December 26, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, A., Ojha, D.P. Electronic Transport and Thermodynamic Properties of Binary Liquid Alloy: Ab Initio Approach. Metall Mater Trans B 41, 574–582 (2010). https://doi.org/10.1007/s11663-010-9356-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-010-9356-6

Keywords

Navigation