Skip to main content
Log in

Comparative study of transport properties using transition metal model potential (TMMP) for 16 liquid metals

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

We propose a pseudopotential of Kumar form with two parameters, the core radius (\(r_{\mathrm{c}}\)) and the model radius (\(r_{\mathrm{m}}\)), which in practice is reduced to a single-parameter potential taking \(r_{\mathrm{m}}\) as the experimental atomic radius. The validity of the presently used pseudopotential is verified by carrying out a detailed study of transport properties of 16 liquid metals. The results of the liquid metal resistivities using the nearly free electron (NFE) Ziman’s approach and the single-site t-matrix approach are presented and compared with the experimental as well as other theoretical findings. Such comparative study confirms that the t-matrix approach is more appropriate and physically sound for a theoretical understanding of liquid metal resistivity, particularly in the case of transition metals. Furthermore, thermoelectric powers are also calculated using the present method and compared with the available experimental and theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. J M Ziman, Philos. Mag. 6, 1013 (1961)

    Article  ADS  Google Scholar 

  2. J M Ziman, Adv. Phys. 16(64), 551 (1967)

    Article  ADS  Google Scholar 

  3. E M Apfelbaum, Phys. Chem. Liq. 48, 534 (2010)

    Article  Google Scholar 

  4. J G Gasser, J. Phys. Condens. Matter 20, 114103 (2008)

    Article  ADS  Google Scholar 

  5. A B Patel, N K Bhatt, B Y Thakore, P R Vyas and A R Jani, Mol. Phys. 112, 2000 (2014)

    Article  ADS  Google Scholar 

  6. A B Patel, N K Bhatt, B Y Thakore, P R Vyas and A R Jani, Phys. Chem. Liq. 52, 471 (2014)

    Article  Google Scholar 

  7. P B Thakor, Y A Sonvane, P N Gajjar and A R Jani, Adv. Mater. Lett. 2, 303 (2011)

    Article  Google Scholar 

  8. C H Patel, A B Patel, N K Bhatt and P N Gajjar, Phys. Chem. Liq. 56(2), 153 (2017)

    Article  Google Scholar 

  9. S Sharmin, G M Bhuiyan, M A Khaleque, R I Rashid and S M Rahman, Phys. Status Solidi B 232, 243 (2002)

  10. R Evans, D A Greenwood and P Lloyd, Phys. Lett. A 35, 57 (1971)

    Article  ADS  Google Scholar 

  11. Y Waseda, The structure of non-crystalline materials (McGraw-Hill International, New York, 1980) p. 203

    Google Scholar 

  12. J S Ononiwu, Phys. Status Solidi B 177, 413 (1993)

    Article  ADS  Google Scholar 

  13. M Shimoji, Liquid metals (Academic Press, London, 1977) p. 64

    Google Scholar 

  14. J A Moriarty, Phys. Rev. B 42, 1609 (1990)

    Article  ADS  Google Scholar 

  15. G M Bhuiyan, J L Bretonnet, L E Gonzales and M Silbertt, J. Phys. Condens. Matter 4, 7651 (1992)

    Article  ADS  Google Scholar 

  16. C V Pandya, P R Vyas, T C Pandya and V B Gohel, Phys. B: Condens. Matter 307(1–4), 138 (2001)

    Article  ADS  Google Scholar 

  17. C V Pandya, P R Vyas, T C Pandya, N Rani and V B Gohel, J. Korean Phys. Soc. 38(4), 377 (2001)

    Google Scholar 

  18. V N Antonov, V Yu Milman, V V Nemoshkalenko and A V Zhalko-Titarenko, Z. Phys. B: Condens. Matter 79(2), 233 (1990)

    Article  ADS  Google Scholar 

  19. P R Vyas, C V Pandya, T C Pandya and V B Gohel, Pramana – J. Phys. 56(4), 559 (2001)

    Article  ADS  Google Scholar 

  20. N E Dubinin, J. Phys: Conf. Ser. 144, 012115 (2009)

    Google Scholar 

  21. N E Dubinin, L D Son and N A Vatolin, J. Phys. Condens. Matter 20, 114111 (2008)

    Article  ADS  Google Scholar 

  22. A Bano, P Khare and N K Gaur, Pramana – J. Phys. 89, 1 (2017)

    Article  ADS  Google Scholar 

  23. L Pollack, J P Perdew, J He, M Marques, F Nogueira and C Fiolhais, Phys. Rev. B 55, 15544 (1997)

    Article  ADS  Google Scholar 

  24. J Kumar, Solid State Commun. 21, 945 (1977)

    Article  ADS  Google Scholar 

  25. CHEMGLOBE.ORG [Internet]. Zurich: Department of chemistry; c 1998–2015 [cited 2016 Jun 26]. Available from: https://chemglobe.org/ptoe/

  26. J Hubbard, Proc. R. Soc. A 243, 336 (1957)

    ADS  Google Scholar 

  27. L J Sham, Proc. R. Soc. A 283, 33 (1965)

    ADS  Google Scholar 

  28. D C Wallace, Thermodynamics of crystals (Dover’s Publication, New York, 1998) p. 316

    Google Scholar 

  29. W A Harrison, Solid state theory (Dover’s Publication, New York, 1979) p. 181

    Google Scholar 

  30. L I Yastrebov and A A Katsnelson, Foundations of one-electron theory of solids (Mir Publishers, Moscow, 1987) p. 157

    Google Scholar 

  31. Y Waseda, A Jain and S Tamaki, J. Phys. F: Met. Phys. 8, 125 (1978)

    Article  ADS  Google Scholar 

  32. J B Van Zytveld, J. Non-Cryst. Solids 61&62, 1085 (1984)

    Article  Google Scholar 

  33. P B Thakor, Y A Sonvane and A R Jani, Phys. Chem. Liq. 47, 653 (2009)

    Article  Google Scholar 

  34. J B Van Zytveld, J. Phys. (Paris) Colloq. 41-C8, 503 (1981)

    Google Scholar 

  35. Y Kita and Z Morita, J. Non-Cryst. Solids 61&62, 1079 (1984)

    Article  Google Scholar 

  36. J Smithells Colin, Metals reference book edited by E A Brandes and G B Brook (Butterworths, London, 1976) p. 19-1

  37. B C Dupree, J B Van Zytveld and J E Enderby, J. Phys. F: Met. Phys. 5, L200 (1975)

    Article  Google Scholar 

  38. H S Schnyders and J B Van, J. Phys. Condens. Matter 8, 10875 (1996)

    Article  ADS  Google Scholar 

  39. N E Cusack, Rep. Prog. Phys. 26, 361 (1963)

    Article  ADS  Google Scholar 

  40. S Mhiaoui, J G Gasser and A Ben Abdellah, J. Phys. Conf. Ser. 98, 1 (2008)

    Article  Google Scholar 

  41. H J Guntherodt, E Hauser and H U Kunzi, Phys. Lett. A 50, 313 (1974)

    Article  ADS  Google Scholar 

  42. J E Enderby and B C Dupree, Philos. Mag. 35, 791 (1977)

    Article  ADS  Google Scholar 

  43. R A Howe and J E Enderby, J. Phys. F: Met. Phys.  3, L12 (1973)

    Article  ADS  Google Scholar 

  44. S Ichimaru and K Utsumi, Phys. Rev. B 24, 7385 (1981)

    Article  ADS  Google Scholar 

  45. B Farid, V Heine, G E Engel, I J Robertson, Phys. Rev. B 48, 11602 (1993)

    Article  ADS  Google Scholar 

  46. L F Mattheiss, Phys. Rev. A 139, 1893 (1965)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors are thankful for the computational facilities developed at the Department of Physics, Gujarat University, Ahmedabad by using the financial assistance of (i) Department of Sciences and Technology (DST), New Delhi through the DST-FIST (Level 1) project (SR / FST / PSI-001 / 2006); (ii) University Grants Commission (UGC), New Delhi through DRS SAP (AP-I) project (F.530 / 10 / DRS / 2020); (iii) Department of Sciences and Technology (DST), New Delhi through the DST-FIST project (SR / FST / PSI-198 / 2014). The authors are also thankful to Ms Namrata Pania (Assistant professor in English, L. J. Institute of Applied Sciences, Gujarat University) for her careful observation, suggestions and corrections to improve the language and readability of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamaldeep G Bhatia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhatia, K.G., Bhatt, N.K., Vyas, P.R. et al. Comparative study of transport properties using transition metal model potential (TMMP) for 16 liquid metals. Pramana - J Phys 92, 28 (2019). https://doi.org/10.1007/s12043-018-1686-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-018-1686-y

Keywords

PACS Nos

Navigation