Skip to main content
Log in

Microporosity Simulation in Aluminum Castings Using an Integrated Pore Growth and Interdendritic Flow Model

  • Syposium: Simulation of Aluminum Shape Casting Processing
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

A new computational model for predicting microporosity in aluminum alloys is described. The model was calibrated against literature data for binary Al-7 pct Si alloys, and subsequently applied to a chill plate test casting in A356 alloy and to an engine block in 319 alloy. The new model allows spherical micropores to nucleate and grow by hydrogen diffusion from a material volume surrounding the pores. This differs from a conventional interdendritic flow computational model for calculating porosity that assumes spherical pores have a diameter proportional to the secondary dendrite arm spacing (SDAS). The new integrated pore growth and interdendritic flow model predicts larger pore diameters and a volume fraction of microporosity that is in better agreement with experimental observations than the interdendritic flow model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang Q.G., Apelian D., Lados D.A. (2001) . J. Light Met., 1:73–84

    Article  Google Scholar 

  2. Lee P.D., Chirazi A., See D. (2001) . J. Light Met. 1:15–30

    Article  Google Scholar 

  3. D. Stefanescu: Shape Casting: The John Campbell Symp., TMS, Warrendale, PA, 2005, pp. 295-304.

  4. Lee Y.W., Chang E., Chieu C.F. (1990) . Metall. Trans. B 21:715–722

    Article  Google Scholar 

  5. Suri V.K., Paul A.J., El’Kaddah N., Berry J.T. (1994) . AFS Trans. 102:861–867

    Google Scholar 

  6. S. Viswanathan, A.S. Sabau, Q. Han, A.J. Duncan, W.D. Porter, and R.B. Dinwiddie: Report No. 94-0319, Oak Ridge National Laboratory, Oak Ridge, TN, 2001.

  7. Kubo K., Pehlke R.D. (1985) . Metall. Trans. B 16:359–66

    Article  Google Scholar 

  8. Q.T. Fang and D.A. Granger: Light Metals, TMS, Warrendale, PA, 1989, pp. 927-935.

  9. Atwood R.C., Sridhar S., Zhang W., Lee P.D. (2000) . Acta Mater. 48:405–417

    Article  Google Scholar 

  10. Rappaz M., Gandin C.-A. (1993) . Acta Metall. Mater. 41:345–359

    Article  Google Scholar 

  11. Huang J., Mori T., Conley J.G. (1998) . Metall. Trans. B 29:1249–1260

    Article  Google Scholar 

  12. Atwood R.C., Lee P.D. (2002) . Metall. Mater. Trans. B 33:209–221

    Article  Google Scholar 

  13. Atwood R.C., Lee P.D. (2003) . Acta Mater. 51:5447–5466

    Article  Google Scholar 

  14. Lee P.D., Chirazi A., Atwood R.C., Wang W. (2004) . Mater. Sci. Eng., A 365:57–65

    Article  Google Scholar 

  15. Hamilton R.W., See D., Butler S., Lee P.D. (2003) . Mater. Sci. Eng., A 343:290–300

    Article  Google Scholar 

  16. Walker M. (2004) Draft Internal GMR Report. GM, Detroit, MI

    Google Scholar 

  17. Poirier D.R., Sung P.K. (2001) Report No. AS-7012. Sandia National Laboratories, Albuquerque, NM

    Google Scholar 

  18. Q. Wang and D. Apelian: ACRL Report No. 97A/PR97-4, ACRL, Metal Processing Institute, Worcester Polytechnic Institute, Worcester, MA, 1997.

  19. E.F. Ryntz: GM Research Report No. MR-844, GM, Detroit, MI, 1984.

  20. Pandat (PanAluminum): Phase Diagram Calculation Software for Aluminum Alloys, Computherm LLC, Madison, WI, 2004.

  21. Emadi D., Gruzleski J.E., Toguri J.M. (1993) . Metall. Trans. B 24:1055–1063

    Article  Google Scholar 

  22. G. Backer: http://www.wrafts.com, Flow Logic, Southfield, MI, 2006.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerald Backer.

Additional information

This article is based on a presentation made in the symposium “Simulation of Aluminum Shape Casting Processing: From Design to Mechanical Properties,” which occurred March 12–16, 2006, during the TMS Spring Meeting in San Antonio, Texas, under the auspices of the Computational Materials Science and Engineering Committee, the Process Modeling, Analysis and Control Committee, the Solidification Committee, the Mechanical Behavior of Materials Committee, and the Light Metal Division/Aluminum Committee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Backer, G., Wang, Q.G. Microporosity Simulation in Aluminum Castings Using an Integrated Pore Growth and Interdendritic Flow Model. Metall Mater Trans B 38, 533–540 (2007). https://doi.org/10.1007/s11663-007-9049-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-007-9049-y

Keywords

Navigation