Skip to main content
Log in

Simulation of microporosity formation in modified and unmodified A356 alloy castings

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

In order to comprehensively model both the performance and inspectability of early design stage safety critical aluminum castings, the size, shape, and location of defects such as pores should be determined by simulation. In this article, a two-dimensional (2-D) model to predict grain size, pore size, pore morphology, and location is presented. The proposed model couples hydrogen gas evolution and microshrinkage pore formation mechanisms with a grain growth simulation model. The nucleation and growth of grains are modeled with a probabilistic method that uses the information from a macroscale heat transfer simulation to determine the rules of transition for grain evolution. Microshrinkage pores and the combination of microshrinkage and gas pores are addressed. The proposed model and postprocessing can provide direct simulated views of the microstructure of the solidifying casting. In the present work, the effect of Sr modifier and hydrogen content on pore size and morphology for equiaxed aluminum alloy A356 is modeled. The simulation results correlate well with the experimental observation of cast structures and other published data. In addition, Sievert’s law and the conditions for spontaneous growth of a gas pore are derived from first principles in the Appendix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.G. Conley, B. Moran, and J. Gray: “A New Paradigm for the Design of Safety Critical Castings,” SAE Congress Paper No. 980455, SAE, Warrendale, PA, 1998.

    Google Scholar 

  2. X.G. Chen and S. Engler: AFS Trans., 1994, vol. 92, pp. 673–82.

    Google Scholar 

  3. G.K. Sigworth and C. Wang: AFS Trans., 1992, vol. 100, pp. 979–88.

    CAS  Google Scholar 

  4. Q.T. Fang and D.A. Granger: AFS Trans., 1989, vol. 97, pp. 989–1000.

    Google Scholar 

  5. G.K. Sigworth, C. Wang, H. Huang, and J.T. Berry: AFS Trans., 1994, vol. 27, pp. 245–61.

    Google Scholar 

  6. D. Argo and J.E. Gruzleski: AFS Trans., 1988, vol. 96, pp. 65–74.

    CAS  Google Scholar 

  7. H. Shahani: Scand. J. Metall., 1985, vol. 14, pp. 306–12.

    CAS  Google Scholar 

  8. D. Emadi, J.E. Gruzleski, and J.M. Toguri: Metall. Trans. B, 1993, vol. 24B, pp. 1055–63.

    CAS  Google Scholar 

  9. K. Kubo and R. Phelke: Metall. Trans. B, 1985, vol. 16B, pp. 359–66.

    CAS  Google Scholar 

  10. J.D. Zhu and I. Ohnaka: Modeling of Casting, Welding and Solidification Processes V, TMS, Warrendale, PA, 1991, pp. 435–42.

    Google Scholar 

  11. S. Shivkumar, D. Apelian, and J. Zou: AFS Trans., 1989, vol. 97, pp. 989–1000.

    Google Scholar 

  12. D.R. Poirier, K. Yuem, and A.L. Maples: Metall Trans. A, 1987, vol. 18A, pp. 1979–87.

    CAS  Google Scholar 

  13. J.L. Spittle and S.G.R. Brown: Acta Metall., 1989, vol. 37, pp. 1803–10.

    Article  CAS  Google Scholar 

  14. M. Rappaz and Ch-A. Gandin: Acta Metall., 1993, vol. 41, pp. 345–60.

    Article  CAS  Google Scholar 

  15. G.K. Upadhya, K.O. Yu, M.A. Layton, and A.J. Paul: Modeling of Casting, Welding and Solidification Processes VII, TMS, Warrendale, PA, 1995, pp. 517–23.

    Google Scholar 

  16. M. Rappaz, C.-A. Grandin, J.-L. Desbiolles, and P. Thevoz: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 695–705.

    CAS  Google Scholar 

  17. J. Huang, J.G. Conley, and P. Callau: “Alternative Methods for Porosity Prediction in Aluminum Alloy,” SAE Congress Paper No. 980387, SAE, Warrendale, PA, 1998.

    Google Scholar 

  18. D.M. Stefanescu, G. Upadhya, and D. Bandyopadhyay: Metall. Trans. A, 1990, vol. 21A, pp. 997–1005.

    CAS  Google Scholar 

  19. Ph. Thevoz, J.L. Desboilles, and M. Rappaz: Metall. Trans. A, 1989, vol. 20A, pp. 311–22.

    CAS  Google Scholar 

  20. W. Kurz, B. Giovanola, and R. Trivedi: Acta Metall., 1986, vol. 34, pp. 823–30.

    Article  CAS  Google Scholar 

  21. M.E. Fine: Introduction to Phase Transformations in Condensed Systems, Macmillan Publishing Co., Riverside, NJ, 1964, p. 7.

    Google Scholar 

  22. Smithells Metals Reference Book, 7th ed., E.A. Brandes and G.B. Brooks, eds., Butterworth-Heinmann, London, 1992, pp. 13–72.

    Google Scholar 

  23. P.N. Hansen, E. Flender, and G.C. Hartmann: Numerical Simulation of Casting Solidification in Automobile Applications, TMS, Warrendale, PA, 1991, pp. 221–30.

    Google Scholar 

  24. J.F. Major: AFS Trans., 1997, pp. 97–094.

  25. A.M. Samuel and F.H. Samuel: J. Mater. Sci., 1992, vol. 27, pp. 6533–63.

    Article  CAS  Google Scholar 

  26. J.G. Conley and J. Huang: Proc. Modeling of Casting, Welding and Solidification Processes VIII, TMS, Warrendale, PA, 1998, pp. 1225–39.

    Google Scholar 

  27. J. Huang and J.G. Conley: Proc. Modeling of Casting, Welding and Solidification Processes VIII, TMS, Warrendale, PA, 1998, pp. 865–72.

    Google Scholar 

  28. E.E. Underwood: Quantitative Stereology, Addison-Wesley, Reading, MA, 1970, p. 25.

    Google Scholar 

  29. H.B. Callen: Thermodynamics, John Wiley, New York, NY, 1960, p. 325.

    Google Scholar 

  30. L.S. Darken and R.W. Gurry: Physical Chemistry of Metals, McGraw-Hill Co., New York, NY, 1953, p. 266.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, J., Conley, J.G. & Mori, T. Simulation of microporosity formation in modified and unmodified A356 alloy castings. Metall Mater Trans B 29, 1249–1260 (1998). https://doi.org/10.1007/s11663-998-0048-4

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-998-0048-4

Keywords

Navigation