Skip to main content
Log in

Modeling of primary spacing selection in dendrite arrays during directional solidification

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

By analyzing the competitive growth in a dendrite array, an analytical model is proposed to describe the characteristic features in dendrite spacing selection. Nominal spacing, according to scale law at steady state, is defined as the baseline for spacing variation. Variation in dendrite spacing is attributed to the creation of new dendrites or to the elimination of existing dendrites. Newly formed spacing is equated to current nominal spacing factored by a kinetic factor. Critical velocities are proposed for the initiation of dendrite creation/elimination during increasing/decreasing velocity, thus yielding the length of incubation periods during which the spacing remains unchanged. The evolution of spacing distribution between its upper and lower limits, and thus weighted average spacing, can be calculated in the process of dendrite creation/elimination. Quantitative calculations have been performed for a model alloy succinonitrile-2.5 wt pct ethanol and compared with the experimental data reported in the literature. The results show that this model provides a reasonable description of the characteristic features of dendrite spacing selection, such as the wide range in spacing distribution, the delayed response in spacing variation, and its history dependence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

G :

temperature gradient

V :

growth velocity

D :

diffusion coefficient in liquid

k :

distribution coefficient

Γ:

Gibbs- Thomson parameter

ΔT 0 :

freezing range

C 0 :

initial concentration

C*:

concentration at the solid/liquid interface

δ c :

solute boundary layer thickness

r :

radius in radial coordinate

R :

dendrite tip radius

λ :

primary dendrite spacing

λ N :

nominal primary spacing

λ i :

initial side arm spacing

λ p :

distance between the tip and the first side-branch perturbation

λ q :

distance between the tip and the newly formed dendrite trunk

x :

dimensionless spacing (x=λ/λ m 0)

P β (x):

beta distribution of spacing

V 0 :

constant growth velocity at stable stage

λ 0N :

nominal spacing at V 0

λ 0m , λ 0a , λ 0M :

minimum, average, and maximum spacing at V 0

B 0 :

constant in beta distribution

f iv :

kinetic factor for dendrite creation at increasing velocity

V iv1 :

critical velocity at the start of the first period of spacing variation

V iv2 :

critical velocity at the start of the second period of spacing variation

λ iv m , λ iv a , λ iv M :

minimum, average, and maximum spacing

x iv a :

dimensionless average spacing (x iv a =λ iv a /λ 0 m )

B iv1 , B iv2 :

constant in beta distribution

f dv :

kinetic factor for dendrite elimination at increasing velocity

V dv1 :

critical velocity at the start of the first period of spacing variation

V dv2 :

critical velocity at the start of the second period of spacing variation

λ dv m , λ dv a , λ dv M :

minimum, average, and maximum spacing

x dv a :

dimensionless average spacing x dv a =λ dv a /λ 0 m

B dv1 , B dv2 :

constant in beta distribution

References

  1. J.D. Hunt: Solidification and Casting of Metals, The Metals Society, London, 1979, Book 192, pp. 3–9.

    Google Scholar 

  2. W. Kurz and D.J. Fisher: Acta Metall., 1981, vol. 29, pp. 11–20.

    Article  CAS  Google Scholar 

  3. R. Trivedi: Metall. Trans. A, 1984, vol. 15A, pp. 977–82.

    CAS  Google Scholar 

  4. D. Ma and P.R. Sahm: Metall. Mater Trans. A, 1998, vol. 29A, pp. 1113–19.

    Article  CAS  Google Scholar 

  5. P.N. Quested and M. McLean: Mater. Sci. Eng., 1984, vol. 65, pp. 171–80.

    Article  CAS  Google Scholar 

  6. W.D. Huang, X.G. Geng, and Y.H. Zhou: J. Cryst. Growth, 1993, vol. 134, pp. 105–15.

    Article  CAS  Google Scholar 

  7. S.H. Han and R. Trivedi: Acta Metall. Mater., 1994, vol. 42, pp. 25–41.

    Article  CAS  Google Scholar 

  8. G.L. Ding, W.D. Huang, X. Huang, X. Lin, and Y.H. Zhou: Acta Mater., 1996, vol. 44, pp. 3705–09.

    Article  CAS  Google Scholar 

  9. X. Lin, W.D. Huang, J. Feng, T. Li, and Y. Zhou: Acta Mater., 1999, vol. 47, pp. 3271–80.

    Article  CAS  Google Scholar 

  10. J.A. Warren and J.S. Langer: Phys. Rev. A, 1990, vol. 42, pp. 3518–25.

    Article  Google Scholar 

  11. J.A. Warren and J.S. Langer: Phys. Rev. E, 1993, vol. 47, pp. 2702–12.

    Article  CAS  Google Scholar 

  12. W. Losert, B.Q. Shi, H.Z. Cummins, and J.A. Warren: Phys. Rev. Lett., 1996, vol. 77, pp. 889–91.

    Article  CAS  Google Scholar 

  13. S.-Z. Lu and J.D. Hunt: J. Cryst. Growth, 1992, vol. 123, pp. 17–34.

    Article  Google Scholar 

  14. S.-Z. Lu, J.D. Hunt, P. Gilgien, and W. Kurz: Acta Metall., 1994, vol. 42, pp. 1653–60.

    Article  CAS  Google Scholar 

  15. J.D. Hunt and S.-Z. Lu: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 611–23.

    CAS  Google Scholar 

  16. Q. Han and J.D. Hunt: Mater. Sci. Eng. A, 1997, vol. A238, pp. 192–95.

    CAS  Google Scholar 

  17. X. Wan, Q. Han, and J.D. Hunt: Acta Mater., 1997, vol. 45, pp. 3975–79.

    Article  CAS  Google Scholar 

  18. Ch.-A. Gandin, M. Eshelman, and R. Trivedi: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 2727–38.

    CAS  Google Scholar 

  19. S.C. Huang and M.E. Glicksman: Acta Metall., 1981, vol. 29, pp. 701–15 and 717–34.

    Article  CAS  Google Scholar 

  20. H. Esaka, W. Kurz, and R. Trivedi: in Solidification Processing, J. Beech and H. Jones, eds., The Institute of Metals, London, 1988, pp. 198–201.

    Google Scholar 

  21. W.J. Boettinger, S.R. Coriell, A.L. Greer, A. Karma, W. Kurz, M. Rappaz, and R. Trivedi: Acta Mater., 2000, vol. 48, pp. 43–70.

    Article  CAS  Google Scholar 

  22. C.E. Pearson: Handbook of Applied Mathematics, 2nd ed., Van Nostrand Reinhold Company, New York, NY, 1983, p. 1229.

    Google Scholar 

  23. K. Somboonsuk and R. Trivedi: Acta Metall., 1985, vol. 33, pp. 1051–60.

    Article  CAS  Google Scholar 

  24. M.E. Glicksman, R.J. Schaefer, and J.D. Ayers: Metall. Trans. A, 1976, vol. 7A, pp. 1747–59.

    CAS  Google Scholar 

  25. R.J. Schaefer and S.R. Coriell: Metall. Trans. A, 1984, vol. 15A, pp. 2109–15.

    CAS  Google Scholar 

  26. W. Kurz and D.J. Fisher: Fundamentals of Solidification, 3rd ed., Trans Tech Publications, Aedermannsdorf, Switzerland, 1989, p. 294.

    Google Scholar 

  27. H. Esaka: Ph.D. Thesis, Ecole Politechnique Federale de Lausanne, Lausanne, Switzerland, 1986.

    Google Scholar 

  28. K. Somboonsuk and R. Trivedi: Scripta Metall., 1984, vol. 18, pp. 1283–86.

    Article  CAS  Google Scholar 

  29. R. Trivedi and K. Somboonsuk: Acta Metall., 1985, vol. 33, pp. 1061–68.

    Article  CAS  Google Scholar 

  30. J.S. Langer and H. Müller-Krumbhaar: J. Cryst. Growth, 1977, vol. 42, pp. 11–14.

    Article  CAS  Google Scholar 

  31. K. Somboonsuk, J.T. Mason, and R. Trivedi: Metall. Trans. A, 1984, vol. 15A, pp. 967–75.

    CAS  Google Scholar 

  32. W. Kurz and D.J. Fisher: Fundamentals of Solidification, 3rd ed., Trans Tech Publications, Aedermannsdorf, Switzerland, 1989, p. 190.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, D. Modeling of primary spacing selection in dendrite arrays during directional solidification. Metall Mater Trans B 33, 223–233 (2002). https://doi.org/10.1007/s11663-002-0007-4

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-002-0007-4

Keywords

Navigation