Skip to main content
Log in

Fatigue in selectively fiber-reinforced titanium matrix composites

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Many applications of the Ti alloy matrix composites (TMCs) reinforced with SiC fibers are expected to use the selective reinforcement concept in order to optimize the processing and increase the cost-effectiveness. In this work, unnotched fatigue behavior of a Ti-6Al-4V matrix selectively reinforced with SCS-6 SiC fibers has been examined. Experiments have been conducted on two different model panels. Results show that the fatigue life of the selectively reinforced composites is far inferior to that of the all-TMC panel. The fatigue life decreases with the decreasing effective fiber volume fraction. Suppression of multiple matrix cracking in the selectively reinforced panels was identified as the reason for their lack of fatigue resistance. Fatigue endurance limit as a function of the clad thickness was calculated using the modified Smith-Watson-Topper (SWT) parameter and the effective fiber volume fraction approach. The regime over which multiple matrix cracking occurs is identified using the bridging fiber fracture criterion. A fatigue failure map for the selectively reinforced TMCs is constructed on the basis of the observed damage mechanisms. Possible applications of such maps are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.J. Connell, F.W. Zok, Z.Z. Du, and Z. Suo: Acta Metall. Mater., 1994, vol. 42, pp. 3451–61.

    Article  CAS  Google Scholar 

  2. U. Ramamurty, F.W. Zok, and F.A. Leckie: Mater. Sci. Eng. A, 1996, vol. A214, pp. 62–67.

    CAS  Google Scholar 

  3. U. Ramamurty, F.W. Zok, and F.A. Leckie: Metall. Mater. Trans. A, 1997, vol. 28A, pp. 2731–40.

    CAS  Google Scholar 

  4. U. Ramamurty, F.-C. Dary, and F.W. Zok: Acta Mater., 1996, vol. 44, pp. 3397–3406.

    Article  CAS  Google Scholar 

  5. T.J.A. Doel, D.C. Cardona, and P. Bowen: Int. J. Fatigue, 1998, vol. 20, pp. 35–50.

    Article  CAS  Google Scholar 

  6. R. Tarleja: Mater. Sci. Eng. A, 1995, vol. A200, pp. 21–28.

    Google Scholar 

  7. B.S. Majumdar and G.M. Newaz: Mater. Sci. Eng. A, 1995, vol. A200, pp. 114–29.

    CAS  Google Scholar 

  8. B.M. Hillberry and W.S. Johnson: J. Comp. Technol. Res., 1992, vol. 14 (4), pp. 221–24.

    Google Scholar 

  9. T.E. Steyer, F.W. Zok, and D.P. Walls: Comp. Sci. Technol., 1998, vol. 58 (10), pp. 1583–91.

    Article  CAS  Google Scholar 

  10. D.P. Walls, J.C. McNulty, and F.W. Zok: Metall. Mater. Trans. A, 1996, vol. 27, pp. 1899–1907.

    Google Scholar 

  11. J.G. Bakuckas, Jr., W.S. Johnson, and C.A. Bigelow: J. Eng. Mater. Technol., 1993, vol. 115, pp. 404–10.

    CAS  Google Scholar 

  12. J. Gayda and T.P. Gabb: Scripta Metall. Mater., 1994, vol. 30, pp. 469–74.

    Article  CAS  Google Scholar 

  13. F.W. Zok, Z.-Z. Du, and S.J. Connell: Mater. Sci. Eng. A, 1995, vol. A200, pp. 103–13.

    CAS  Google Scholar 

  14. S. Suresh: Fatigue of Materials, Cambridge University Press, Cambridge, United Kingdom, 1991.

    Google Scholar 

  15. K.N. Smith, P. Watson, and T.H. Topper: J. Mater., 1970, vol. 5 (4), pp. 767–78.

    Google Scholar 

  16. C.A. Stubbington: Titanium and Titanium Alloys Source Book, ASM, Metals Park, OH, 1982, pp. 140–52.

    Google Scholar 

  17. C.A. Bigelow: J. Comp. Technol. Res., 1992, vol. 14 (4), pp. 211–20.

    Article  CAS  Google Scholar 

  18. N. Wang, D.C. Cardona, and P. Bowen: Int. J. Fracture, 1997, vol. 87, pp. 225–40.

    Article  CAS  Google Scholar 

  19. B. Budiansky, J.W. Hutchinson, and A.G. Evans: J. Mech. Phys. Solids, 1986, vol. 34, pp. 167–90.

    Article  Google Scholar 

  20. B. Budiansky and L. Cui: J. Mech. Phys. Solids, 1994, vol. 42, pp. 1–19.

    Article  CAS  Google Scholar 

  21. R.M. McMeeking and A.G. Evans: Mech. Mater., 1990, vol. 9, pp. 217–27.

    Article  Google Scholar 

  22. M.R. Begley and R.M. McMeeking: Comp. Sci. Technol., 1995, vol. 53, pp. 365–82.

    Article  CAS  Google Scholar 

  23. G. Bao and R.M. McMeeking: Acta Metall. Mater., 1994, vol. 42, pp. 2415–25.

    Article  CAS  Google Scholar 

  24. D.P. Walls, G. Bao, and F.W. Zok: Acta Metall. Mater., 1993, vol. 41, pp. 2061–71.

    Article  CAS  Google Scholar 

  25. D.S. Dugdale: J. Mech. Phys. Solids, 1960, vol. 8, pp. 100–04.

    Article  Google Scholar 

  26. G.I. Barenblatt: Adv. Appl. Mech., 1962, vol. 7, pp. 55–131.

    Article  Google Scholar 

  27. B.A. Bilby, A.H. Cottrell, and K.H. Swinden: Proc. R. Soc., 1963, vol. A272, pp. 304–14.

    Google Scholar 

  28. M.F. Kanninen and C.H. Popelar: Advanced Fracture Mechanics, Oxford University Press, Oxford, United Kingdom, 1985.

    Google Scholar 

  29. Z. Suo, S. Ho, and X. Gong: J. Eng. Mat. Technol., 1993, vol. 115, pp. 319–26.

    Google Scholar 

  30. S.L. Phoenix, M. Ibnabdeljalil, and C.-Y. Hui: Int. J. Solids Structure, 1997, vol. 34, pp. 545–68.

    Article  Google Scholar 

  31. U. Ramamurty, F.W. Zok, F. Leckie, and W. Curtin: University of California, Santa Barbara, unpublished research, 1994.

  32. W.A. Curtin: J. Mech. Phys. Solids, 1993, vol. 41, pp. 217–45.

    Article  CAS  Google Scholar 

  33. S. Connell and F.W. Zok: Acta Mater., 1997, vol. 45, pp. 5203–11.

    Article  CAS  Google Scholar 

  34. F.W. Zok, M.R. Begley, T.E. Steyer, and D.P. Walls: Mech. Mater., 1997, vol. 26, pp. 81–92.

    Article  Google Scholar 

  35. R.P. Nimmer and R.J. Bankert: GE CRD Report No. 91, CRD 060, General Electric Corporation, Scanactedy, NY, 1992.

    Google Scholar 

  36. Metals Handbook, 9th ed., AS Metals, Metals Park, OH, 1990.

  37. S. Jansson, H. Deve, and A.G. Evans: Metall. Trans. A, 1991, vol. 22A, pp. 2975–84.

    CAS  Google Scholar 

  38. D.P. Walls and F.W. Zok: Acta Metall. Mater., 1994, vol. 42, pp. 2675–81.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramamurty, U. Fatigue in selectively fiber-reinforced titanium matrix composites. Metall Mater Trans A 30, 2237–2248 (1999). https://doi.org/10.1007/s11661-999-0036-6

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-999-0036-6

Keywords

Navigation