Skip to main content
Log in

Integrated Fabrication of Cf/Al Composite and Joining with TC4 via Liquid-Solid Infiltration Extrusion: Microstructure Evolution and Fracture Behavior

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Efficiently joining TC4 and carbon fiber-reinforced aluminum matrix (Cf/Al) composite greatly expands the applications of composite in the aerospace industry. In this study, a liquid-solid infiltration extrusion (LSIE) process was proposed to effectively join Cf/Al composite with TC4 while preparing them. The microstructure, interfacial properties, and phase composition of the Ti-Cf/Al interface were characterized using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and X-ray diffraction (XRD). The mechanical response and failure modes of the composite were investigated. The results show that a TiAl3 intermetallic transition layer with a width of about 10 μm was successfully formed at the interface of TC4 and Cf/Al composite. Compared with the Cf/Al composite, the presence of this transition layer significantly increased the shear strength of the joint by 35.8 pct. In addition, through the unique deformation mechanism of the transition layer, the joint effectively disperses the stress concentration and delays the crack extension, thus realizing the transformation of the composite material from bending brittle fracture to multi-crack progressive damage mode. Meanwhile, the deformation behavior and strengthening mechanism of the TiAl3 transition layer on the composite are also deeply explored in this study. This successful and simple toughening strategy provides a feasible way to realize the application of continuous Cf/Al composite.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. W. Zhang and J. Xu: Mater. Des., 2022, vol. 221, p. 110994.

    Article  CAS  Google Scholar 

  2. Y. Li, Y. Xiao, L. Yu, K. Ji, and D. Li: Compos. Part A Appl. Sci. Manuf., 2022, vol. 154, p. 106762.

    Article  CAS  Google Scholar 

  3. H.H. Kim, J. Babu, and C.G. Kang: Metall. Mater. Trans. A, 2014, vol. 45A, pp. 2636–45.

    Article  Google Scholar 

  4. Y. Choi, X. Meng, and Z. Xu: Sci. Rep., 2021, vol. 11, p. 23385.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Y. Zhang, W. Wang, J. Liu, T. Wang, and T. Li: J. Alloys Compd., 2023, vol. 968, p. 172213.

    Article  CAS  Google Scholar 

  6. C. Wang, G. Chen, X. Wang, Y. Zhang, W. Yang, and G. Wu: Metall. Mater. Trans. A, 2012, vol. 43A, pp. 2514–19.

    Article  Google Scholar 

  7. S.R. Al-Sayed, F.A. Samad, T. Mohamed, and D. Youssef: Metall. Mater. Trans. A, 2022, vol. 53A, p. 3807.

    Article  Google Scholar 

  8. L. Xiao, W. Song, M. Hu, and P. Li: Metall. Mater. Trans. A, 2019, vol. 764A, p. 138204.

    Google Scholar 

  9. S. Liu, Y. Yan, Y. Zhou, B. Han, B. Wang, D. Zhang, S. Xue, Z. Wang, K. Yu, Y. Shi, and C. Wang: Micromachines, 2022, vol. 13, p. 908.

    Article  PubMed  PubMed Central  Google Scholar 

  10. W. Mu, J. Lin, E. Liu, W. He, and Z. Huang: J. Alloys Compd., 2023, vol. 938, p. 168297.

    Article  CAS  Google Scholar 

  11. S. Li and C. Chao: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 2153–60.

    Article  CAS  Google Scholar 

  12. G. Cam, G. Ipekoglu, K.-H. Bohm, and M. Kocak: J. Mater. Sci., 2006, vol. 41, pp. 5273–82.

    Article  CAS  Google Scholar 

  13. G. Cam, H. Clemens, R. Gerling, and M. Kocak: Int. J. Mater. Res., 1999, vol. 90, pp. 284–88.

    Article  CAS  Google Scholar 

  14. G. Cam, H.M. Flower, and D.R.F. West: Mater Sci Tech, 1991, vol. 7, pp. 505–11.

    Article  CAS  Google Scholar 

  15. L. Shen, Z. Li, G. Feng, S. Zhang, Z. Zhou, and P. He: Rare Met., 2021, vol. 40, pp. 1817–24.

    Article  CAS  Google Scholar 

  16. G. Feng, Z. Li, Z. Zhou, and Y. Wang: Mater. Des., 2016, vol. 110, pp. 130–37.

    Article  CAS  Google Scholar 

  17. G. Feng, Z. Li, R.J. Jacob, Y. Yang, Y. Wang, Z. Zhou, D.P. Sekulic, and M.R. Zachariah: Mater. Des., 2017, vol. 126, pp. 197–206.

    Article  CAS  Google Scholar 

  18. G. Feng, Z. Li, R. Liu, and S. Feng: Acta Metall Sin-Engl, 2015, vol. 28, pp. 405–13.

    Article  CAS  Google Scholar 

  19. J. Shi, Q. Wang, X. Tian, J. Xiong, J. Li, L. Zhang, and J. Feng: J. Manuf. Process., 2019, vol. 47, pp. 211–18.

    Article  Google Scholar 

  20. P. He, Y.Z. Liu, and D. Liu: Metall. Mater. Trans. A, 2006, vol. 422A, pp. 333–38.

    Google Scholar 

  21. J. Chen, et al.: Metall. Mater. Trans. A, 2020, vol. 51A, pp. 5198–5212.

    Article  Google Scholar 

  22. M. Velamati, E. Aguilar, M.A. Garza-Castañon, N.P. Hung, and M. Powers: J. Mater. Process. Technol., 2012, vol. 212, pp. 2549–57.

    Article  CAS  Google Scholar 

  23. W. Wang, Y. Wang, J. Huang, R. Yu, J. Yang, and S. Chen: J. Mater. Process. Technol., 2019, vol. 274, p. 116295.

    Article  CAS  Google Scholar 

  24. L.X. Zhang, Q. Chang, Z. Sun, Z.Y. Yang, and J.C. Feng: J. Mater. Process. Technol., 2019, vol. 274, p. 116266.

    Article  CAS  Google Scholar 

  25. J. Zhou, K. Zhong, C. Zhao, H. Meng, and L. Qi: Ceram. Int., 2021, vol. 47, pp. 6597–6607.

    Article  CAS  Google Scholar 

  26. C. Dong: Compos. C: Open Access, 2020, vol. 3, p. 100047.

    CAS  Google Scholar 

  27. D. Zhao, K. Chang, T. Ebel, H. Nie, R. Willumeit, and F. Pyczak: J. Alloys Compd., 2015, vol. 640, pp. 393–400.

    Article  CAS  Google Scholar 

  28. C. Lin, S. Wang, H. Yan, Y. Han, J. Zhu, and H. Shi: Met. Mater. Int., 2021, vol. 27, pp. 306–18.

    Article  CAS  Google Scholar 

  29. G. Cam, M. Kocak, D. Dobi, L. Heikinheimo, and M. Siren: Sci. Technol. Weld. Join., 1997, vol. 2, pp. 95–101.

    Article  CAS  Google Scholar 

  30. M. Cao, C. Wang, K. Deng, K. Nie, W. Liang, and Y. Wu: J. Mater. Res. Technol., 2021, vol. 14, pp. 1655–69.

    Article  CAS  Google Scholar 

  31. M. Mirjalili, M. Soltanieh, K. Matsuura, and M. Ohno: Intermetallics (Barking), 2013, vol. 32, pp. 297–302.

    Article  CAS  Google Scholar 

  32. A.H. Assari and B. Eghbali: Met. Mater. Int., 2016, vol. 22, pp. 915–23.

    Article  CAS  Google Scholar 

  33. N. Thiyaneshwaran, K. Sivaprasad, and B. Ravisankar: Sci. Rep., 2018, vol. 8, p. 16797.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. X. Jiang, J. Song, Y. Su, Y. Zhang, and L. Hu: Tribol. Lett., 2018, vol. 66, pp. 1–1.

    Article  CAS  Google Scholar 

  35. K. Zhong, J. Zhou, C. Zhao, K. Yun, and L. Qi: Compos. Part A Appl. Sci. Manuf., 2022, vol. 163, p. 107201.

    Article  CAS  Google Scholar 

  36. M. Eid, S. Kaytbay, O. Elkady, and A. El-Assal: Ceram. Int., 2021, vol. 47, pp. 21890–1904.

    Article  CAS  Google Scholar 

  37. W. Mu, J. Lin, E. Liu, C. Zhou, and W. He: J. Mater. Res. Technol., 2022, vol. 17, pp. 1852–67.

    Article  CAS  Google Scholar 

  38. H. Nayeb-Hashemi and J. Seyyedi: Metall. Trans. A, 1989, vol. 20, pp. 727–39.

    Article  Google Scholar 

  39. M. Eid, S. Kaytbay, A. El-Assal, and O. Elkady: Met. Mater. Int., 2022, vol. 28, pp. 2747–65.

    Article  Google Scholar 

  40. D. Raabe, B. Sun, A. Kwiatkowski Da Silva, B. Gault, H. Yen, K. Sedighiani, et al.: Metall. Mater. Trans. A, 2020, vol. 51A, pp. 5517–86.

    Article  Google Scholar 

  41. F. Jiao, M. Liu, F. Jiang, J. Zhao, P. Li, and Z. Wang: Metall. Mater. Trans. A, 2019, vol. 765A, p. 138255.

    Google Scholar 

  42. S. Qin, X. Cui, Z. Tian, L. Geng, B. Liu, J. Zhang, and J. Chen: J. Alloys Compd., 2017, vol. 700, pp. 122–29.

    Article  CAS  Google Scholar 

  43. Y. Wang, S. Zhou, and K.S. Vecchio: Metall. Mater. Trans. A, 2016, vol. 665A, pp. 47–58.

    Google Scholar 

  44. Y. Chen, Y. Ma, Q. Yin, F. Pan, C. Cui, Z. Zhang, and B. Liu: Compos. Sci. Technol., 2021, vol. 214, p. 108970.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant Nos. 51575447, 51972271, and 52231004).

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiming Zhou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, Y., Zhou, J., Zhong, K. et al. Integrated Fabrication of Cf/Al Composite and Joining with TC4 via Liquid-Solid Infiltration Extrusion: Microstructure Evolution and Fracture Behavior. Metall Mater Trans A (2024). https://doi.org/10.1007/s11661-024-07407-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11661-024-07407-7

Navigation