Skip to main content
Log in

Opposite Bauschinger Effects on Wear of High-Entropy Alloy AlCoCrFeNix (x = 0 to 2) Under Sliding Wear and Machining Conditions

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Bauschinger effect on wear of high-entropy alloy (HEA), AlCoCrFeNix (x = 0 to 2), was studied with the aim of verifying a hypothesis: Bauschinger effect affects sliding wear and machining wear oppositely. Wear tests were performed with two counter-parts, \({\text{Si}}_{3} {\text{N}}_{4}\) ball and diamond tip, which simulated sliding wear and machining wear conditions. With the former, bi-directional sliding resulted in less wear than unidirectional sliding, while the trend was opposite when the diamond tip was used, thus verifying the hypothesis. With increasing Ni content, the difference in wear between bi-directional and unidirectional sliding processes was enlarged, ascribed to enhanced Bauschinger effect due to increased plasticity of the AlCoCrFeNix alloy. Molecular dynamics simulations were implemented to elucidate underlying mechanisms. The study helps take the advantage of Bauschinger effect via tailoring the microstructure of high-entropy alloys, which have demonstrated to have high engineering values, and other materials as well for effective wear control and efficient material machining or manufacturing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. L. Song, B. Wu, L. Zhang, X. Du, Y. Wang, C. Esling, and M.J. Philippe: Mater Charact, 2019, vol. 148, pp. 63–70.

    Article  CAS  Google Scholar 

  2. O. Bouaziz, J. Moon, H.S. Kim, and Y. Estrin: Scripta Mater., 2021, vol. 191, pp. 107–10.

    Article  CAS  Google Scholar 

  3. M. Kawamura, M. Asakura, N.L. Okamoto, K. Kishida, H. Inui, and E.P. George: Acta Mater., 2021, vol. 203, p. 116454.

    Article  CAS  Google Scholar 

  4. C.Y. Tang, D.Y. Li, and G.W. Wen: Tribol. Lett., 2011, vol. 41, pp. 569–72.

    Article  CAS  Google Scholar 

  5. C.Y. Tang, D.Y. Li, and G.W. Wen: Tribol. Lett., 2011, vol. 43, pp. 101–06.

    Article  Google Scholar 

  6. M.R. Ripoll, M. Linz, and C. Gachot: Wear, 2017, vol. 376, pp. 1728–38.

    Article  Google Scholar 

  7. J. Zhou, J. Shen, F.A. Essa, and J. Yu: J. Mater. Res. Technol, 2022, vol. 18, pp. 15–28.

    Article  CAS  Google Scholar 

  8. F. Lou, Z. Ma, S. Nie, H. Ji, and F. Yin: Tribol. Int., 2022, vol. 175, p. 107815.

    Article  CAS  Google Scholar 

  9. V.V. Shevelya, G.S. Kalda, and Y.S. Sokolan: J. Frict. Wear, 2019, vol. 40, pp. 156–62.

    Article  Google Scholar 

  10. Y. Tang and D.Y. Li: Wear, 2021, vol. 476, p. 203583.

    Article  CAS  Google Scholar 

  11. B. Cantor, I.T.H. Chang, P. Knight, and A.J.B. Vincent: Mater. Sci. Eng. A, 2004, vol. 375, pp. 213–18.

    Article  Google Scholar 

  12. J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, and S.Y. Chang: Adv. Eng. Mater., 2004, vol. 6, pp. 299–303.

    Article  CAS  Google Scholar 

  13. Y.G. Yan and K. Wang: Tungsten, 2023, vol. 5, pp. 531–38.

    Article  Google Scholar 

  14. S. Uporov, V. Bykov, S. Pryanichnikov, A. Shubin, and N. Uporova: Intermetallics, 2017, vol. 83, pp. 1–8.

    Article  CAS  Google Scholar 

  15. M.J. Yao, K.G. Pradeep, C.C. Tasan, and D. Raabe: Scripta Mater., 2014, vol. 72, pp. 5–8.

    Article  Google Scholar 

  16. Q. Zeng and Y. Xu: Mater. Today Commun., 2020, vol. 24, p. 101261.

    Article  CAS  Google Scholar 

  17. D. Dou, K. Deng, and J. Li: Surf. Rev. Lett., 2019, vol. 26, p. 1850163.

    Article  CAS  Google Scholar 

  18. X. Shi, C. Wang, M. Huang, and H. Cui: Mater. Res. Express, 2019, vol. 6, p. 106537.

    Article  CAS  Google Scholar 

  19. M. Wu, R.C. Setiawan, and D.Y. Li: Wear, 2022, vol. 492, p. 204231.

    Article  Google Scholar 

  20. W. Li, J. Li, and Y. Xu: Metals, 2022, vol. 12, p. 460.

    Article  CAS  Google Scholar 

  21. N. Hua, W. Wang, Q. Wang, Y. Ye, S. Lin, L. Zhang, Q. Guo, J. Brechtl, and P.K. Liaw: J. Alloys Compd., 2021, vol. 861, p. 157997.

    Article  CAS  Google Scholar 

  22. L. Cao, X. Wang, Y. Wang, L. Zhang, Y. Yang, F. Liu, and Y. Cui: Appl. Phys., 2019, vol. 125, pp. 1–11.

    Google Scholar 

  23. M. López Ríos, P.P. Socorro Perdomo, I. Voiculescu, V. Geanta, V. Crăciun, I. Boerasu, and J.C. Mirza Rosca: Sci. Rep., 2020, vol. 10, pp. 1–11.

    Article  Google Scholar 

  24. Y. Lu, Y. Dong, S. Guo, L. Jiang, H. Kang, T. Wang, B. Wen, Z. Wang, J. Jie, Z. Cao, H. Ruan, and T. Li: Sci. Rep., 2014, vol. 4, pp. 1–5.

    Google Scholar 

  25. Y. Lu, X. Gao, L. Jiang, Z. Chen, T. Wang, J. Jie, H. Kang, Y. Zhang, S. Guo, H. Ruan, Y. Zhao, Z. Cao, and T. Li: Acta Mater., 2017, vol. 124, pp. 143–50.

    Article  CAS  Google Scholar 

  26. X. Yang, J. Zhang, S. Sagar, T. Dube, B.G. Kim, Y.G. Jung, D. Koo, A. Jones, and J. Zhang: Mater. Chem. Phys., 2021, vol. 263, p. 124341.

    Article  CAS  Google Scholar 

  27. X. Luo, J. Li, Y. Jin, C. Hu, D. Jia, S. Zhan, Y. Yu, M. Hua, and H. Duan: Met. Mater. Int., 2020, vol. 26, pp. 1286–94.

    Article  CAS  Google Scholar 

  28. A. Meghwal, A. Anupam, V. Luzin, C. Schulz, C. Hall, B.S. Murty, R. Kottada, C. Berndt, and A.S.M. Ang: J. Alloys Compd., 2021, vol. 854, p. 157140.

    Article  CAS  Google Scholar 

  29. X.C. Huang, H. Lu, H.B. He, X.G. Yan, and D.Y. Li: Philos. Mag., 2015, vol. 95, pp. 3896–3909.

    Article  CAS  Google Scholar 

  30. H. Lu, Z. Liu, X. Yan, D. Li, and H. Tian: Sci. Rep., 2016, vol. 6, pp. 1–11.

    Article  Google Scholar 

  31. H. Lu, L. Li, X. Huang, and D. Li: J. Alloys Compd., 2018, vol. 737, pp. 323–29.

    Article  CAS  Google Scholar 

  32. Y. Tian, C. Dong, G. Wang, X. Cheng, and X. Li: Constr. Build. Mater., 2020, vol. 246, p. 118462.

    Article  CAS  Google Scholar 

  33. N. Alharthi, E.S.M. Sherif, H.S. Abdo, and S. Zein El Abedin: Adv. Mater. Sci. Eng., 2017, vol. 2017, pp. 1–8.

    Google Scholar 

  34. S. Plimpton: (No. SAND-91-1144). Sandia National Labs., Albuquerque, NM, 1993.

  35. J.D. Honeycutt and H.C. Andersen: J. Phys. Chem., 1987, vol. 91, pp. 4950–63.

    Article  CAS  Google Scholar 

  36. A. Stukowski: Model. Simul. Mater. Sci. Eng., 2012, vol. 20, p. 045021.

    Article  Google Scholar 

  37. A. Stukowski: Model. Simul. Mater. Sci. Eng., 2009, vol. 18, p. 015012.

    Article  Google Scholar 

  38. D. Farkas and A. Caro: J. Mater. Res., 2020, vol. 35, pp. 3031–40.

    Article  CAS  Google Scholar 

  39. X.W. Zhou, R.A. Johnson, and H.N.G. Wadley: Phys. Rev. B, 2004, vol. 69, p. 144113.

    Article  Google Scholar 

  40. W.M. Choi, Y.H. Jo, S.S. Sohn, S. Lee, and B.J. Lee: Npj Comput. Mater, 2018, vol. 4, pp. 1–9.

    Article  CAS  Google Scholar 

  41. N. Bao, J. Zuo, Z. Du, M. Yang, G. Jiang, and L. Zhang: Mater. Res. Express, 2019, vol. 6, p. 096519.

    Article  CAS  Google Scholar 

  42. H. Yang, Y. Tang, and P. Yang: Nanoscale, 2019, vol. 11, pp. 14155–63.

    Article  CAS  PubMed  Google Scholar 

  43. Y. Tang, H. Pan, and D.Y. Li: Wear, 2021, vol. 476, p. 203642.

    Article  CAS  Google Scholar 

  44. J.T. Liang, K.C. Cheng, and S.H. Chen: J. Alloys Compd., 2019, vol. 803, pp. 484–90.

    Article  CAS  Google Scholar 

  45. A. Munitz, S. Salhov, S. Hayun, and N. Frage: J. Alloys Compd., 2016, vol. 683, pp. 221–30.

    Article  CAS  Google Scholar 

  46. J. Joseph, T. Jarvis, X. Wu, N. Stanford, P. Hodgson, and D.M. Fabijanic: Mater. Sci. Eng. A, 2015, vol. 633, pp. 184–93.

    Article  CAS  Google Scholar 

  47. R.K. Sim, Z. Xu, M.Y. Wu, A. He, D.L. Chen, and D.Y. Li: J. Mater. Sci., 2022, vol. 57, pp. 11949–68.

    Article  CAS  Google Scholar 

  48. Z. Xu, D.Y. Li, and D.L. Chen: Wear, 2021, vol. 476, p. 203650.

    Article  CAS  Google Scholar 

  49. J.S. Kasper, B.F. Decker, and J.R. Belanger: J. Appl. Phys., 1951, vol. 22, pp. 361–62.

    Article  CAS  Google Scholar 

  50. M. Ogura, T. Fukushima, R. Zeller, and P.H. Dederichs: J. Alloys Compd., 2017, vol. 715, pp. 454–59.

    Article  CAS  Google Scholar 

  51. B.F.O. Costa, G. Le Caër, J.M. Loureiro, and V.S. Amaral: J. Alloys Compd., 2006, vol. 424, pp. 131–40.

    Article  CAS  Google Scholar 

  52. B.S. Murty, J.W. Yeh, S. Ranganathan, and P.P. Bhattacharjee: High-entropy alloys, Elsevier, Amsterdam, 2019.

    Book  Google Scholar 

  53. A. Devaraju: Int. J. Mech. Eng. Technol, 2015, vol. 6, pp. 77–83.

    Google Scholar 

  54. I. Radu and D.Y. Li: Wear, 2005, vol. 259, pp. 453–58.

    Article  CAS  Google Scholar 

  55. M. Wu, G.J. Diao, Z. Xu, R. Sim, W.G. Chen, D.L. Chen, and D.Y. Li: Metals, 2023, vol. 13, p. 656.

    Article  CAS  Google Scholar 

  56. A. Gokhale, E.W. Huang, S.Y. Lee, R. Prasad, and J. Jain: IOP Conf. Ser., 2020, vol. 894, p. 012016.

    Article  CAS  Google Scholar 

  57. D.Y. Li and J.A. Szpunar: J. Mater. Sci., 1994, vol. 13, pp. 1521–23.

    CAS  Google Scholar 

  58. S.B. Yin and D.Y. Li: Mater. Sci. Eng. A, 2005, vol. 394, pp. 266–76.

    Article  Google Scholar 

  59. H.B. He, W.Q. Han, H.Y. Li, D.Y. Li, J. Yang, T. Gu, and T. Deng: Int. J. Pr. Eng. Manf., 2014, vol. 15, pp. 655–60.

    Article  Google Scholar 

  60. S. Faghihi, D.Y. Li, and J.A. Szpunar: Nanotechnology, 2010, vol. 21, p. 485703.

    Article  CAS  PubMed  Google Scholar 

  61. F. Mokdad, D.L. Chen, and D.Y. Li: Mater. Des., 2017, vol. 119, pp. 376–96.

    Article  CAS  Google Scholar 

  62. B. Mao, A. Siddaiah, X. Zhang, B. Li, P.L. Menezes, and Y.L. Liao: Appl. Surf. Sci., 2019, vol. 480, pp. 998–1007.

    Article  CAS  Google Scholar 

  63. I. Hutchings and P. Shipway: Tribology: Friction and Wear of Engineering Materials, 2nd ed. Butterworth-Heinemann, Oxford, 2017.

    Google Scholar 

Download references

Acknowledgments

The authors are grateful for financial support from the Natural Science and Engineering Research Council of Canada (NSERC AMA ALLRP 567506-21 Li), NSERC-NRCan (NSERC ASC 586454-23 Li), Trimay, Mitacs (MI MA IT29134 Kumar/Xu/Li), Compute Canada, Double-Hundred Talent Plan of Shandong Province (WSR2023047), and the Academician Workstation in Yunnan Province (202305AF150019).

Data Availability

The paper is self-containing. For additional information or data, please contact the corresponding author.

Conflict of interest

All authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Y. Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Z., Tang, Y.Q., He, A.Q. et al. Opposite Bauschinger Effects on Wear of High-Entropy Alloy AlCoCrFeNix (x = 0 to 2) Under Sliding Wear and Machining Conditions. Metall Mater Trans A (2024). https://doi.org/10.1007/s11661-024-07382-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11661-024-07382-z

Navigation