Skip to main content
Log in

The intrinsic strength prediction by machine learning for refractory high entropy alloys

  • Original Paper
  • Published:
Tungsten Aims and scope Submit manuscript

Abstract

Herein, we trained machine learning (ML) model to quickly and accurately conduct the strength prediction of refractory high entropy alloys (RHEAs) matrix. Gradient Boosting (GB) regression model shows an outstanding performance against other ML models. In addition, the heat of fusion and atomic size difference is shown to be paramount to the strength of the high entropy alloys (HEAs) matrix. In addition, we discussed the contribution of each feature to the solid solution strengthening (SSS) of HEAs. The excellent predictive accuracy shows that the GB model can be efficient and reliable for the design of RHEAs with desired strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data and methods reported in this paper are available from the corresponding author upon reasonable request.

References

  1. Yeh JW, Chen SK, Lin SJ, Gan JY, Chin TS, Shun TT, Tsau CH, Chang SY. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv Eng Mater. 2004;6(5):299.

    CAS  Google Scholar 

  2. Cantor B, Chang I, Knight P, Vincent A. Microstructural development in equiatomic multicomponent alloys. Mater Sci Eng A. 2004;375:213.

    Google Scholar 

  3. Yeh JW. Physical metallurgy of high-entropy alloys. Jom. 2015;67(10):2254.

    CAS  Google Scholar 

  4. George EP, Raabe D, Ritchie RO. High-entropy alloys. Nat Rev Mater. 2019;4(8):515.

    CAS  Google Scholar 

  5. Senkov ON, Wilks GB, Miracle DB, Chuang CP, Liaw PK. Refractory high-entropy alloys. Intermetallics. 2010;18:1758.

    CAS  Google Scholar 

  6. Senkov ON, Miracle DB, Chaput KJ, Couzinie JP. Development and exploration of refractory high entropy alloys—review. J Mater Res. 2018;33:3092.

    CAS  Google Scholar 

  7. Li W, Xie D, Li D, Zhang Y, Gao Y, Liaw PK. Mechanical behavior of high-entropy alloys. Prog Mater Sci. 2021;118: 100777.

    CAS  Google Scholar 

  8. Kumar NAPK, Li C, Leonard KJ, Bei H, Zinkle SJ. Microstructural stability and mechanical behavior of FeNiMnCr high entropy alloy under ion irradiation. Acta Mater. 2016;113:230.

    CAS  Google Scholar 

  9. Shi Y, Yang B, Liaw P. Corrosion-resistant high-entropy alloys: a Review. Metals. 2017;7(2):43.

    Google Scholar 

  10. Li M, Gazquez J, Borisevich A, Mishra R, Flores KM. Evaluation of microstructure and mechanical property variations in AlxCoCrFeNi high entropy alloys produced by a high-throughput laser deposition method. Intermetallics. 2018;95:110.

    CAS  Google Scholar 

  11. Li M, Flores KM. Laser processing as a high-throughput method to investigate microstructure-processing-property relationships in multiprincipal element alloys. J Alloys Compd. 2020;825: 154025.

    CAS  Google Scholar 

  12. Xing Q, Ma J, Zhang Y. Phase thermal stability and mechanical properties analyses of (Cr, Fe, V)-(Ta, W) multiple-based elemental system using a compositional gradient film. Int J Miner Metall Mater. 2020;27(10):1379.

    CAS  Google Scholar 

  13. Labusch R. A statistical theory of solid solution hardening. Phys Status Solidi B. 1970;41(2):659.

    Google Scholar 

  14. Fleischer RL. Substitutional solution hardening. Acta Metall. 1963;11(3):203.

    CAS  Google Scholar 

  15. Yao HW, Qiao JW, Hawk JA, Zhou HF, Chen MW, Gao MC. Mechanical properties of refractory high-entropy alloys: experiments and modeling. J Alloys Compd. 2017;696:1139.

    CAS  Google Scholar 

  16. Varvenne C, Leyson GPM, Ghazisaeidi M, Curtin WA. Solute strengthening in random alloys. Acta Mater. 2017;124:660.

    CAS  Google Scholar 

  17. LaRosa CR, Shih M, Varvenne C, Ghazisaeidi M. Solid solution strengthening theories of high-entropy alloys. Mater Charact. 2019;151:310.

    CAS  Google Scholar 

  18. Toda-Caraballo I, Rivera-Díaz-del-Castillo PEJ. Modelling solid solution hardening in high entropy alloys. Acta Mater. 2015;85:14.

    CAS  Google Scholar 

  19. Moreen HA, Taggart R, Polonis DH. A model for the prediction of lattice parameters of solid solutions. Metall Mater Trans. 1971;2(1):265.

    CAS  Google Scholar 

  20. Varvenne C, Luque A, Curtin WA. Theory of strengthening in fcc high entropy alloys. Acta Mater. 2016;118:164.

    CAS  Google Scholar 

  21. Yin B, Curtin WA. First-principles-based prediction of yield strength in the RhIrPdPtNiCu high-entropy alloy. npj Comput Mater. 2019;5:14.

    Google Scholar 

  22. Thiel F, Geissler D, Nielsch K, Kauffmann A, Seils S, Heilmaier M, Utt D, Albe K, Motylenko M, Rafaja D, Freudenberger J. Origins of strength and plasticity in the precious metal based high-entropy alloy AuCuNiPdPt. Acta Mater. 2020;185:400.

    CAS  Google Scholar 

  23. Li L, Fang Q, Li J, Liu B, Liu Y, Liaw PK. Lattice-distortion dependent yield strength in high entropy alloys. Mater Sci Eng A. 2020;784: 139323.

    CAS  Google Scholar 

  24. Zhang L, Xiang Y, Han J, Srolovitz DJ. The effect of randomness on the strength of high-entropy alloys. Acta Mater. 2019;166:424.

    CAS  Google Scholar 

  25. Wen C, Zhang Y, Wang C, Xue D, Bai Y, Antonov S, Dai L, Lookman T, Su Y. Machine learning assisted design of high entropy alloys with desired property. Acta Mater. 2019;170:109.

    CAS  Google Scholar 

  26. Zou C, Li J, Wang WY, Zhang Y, Lin D, Yuan R, Wang X, Tang B, Wang J, Gao X, Kou H, Hui X, Zeng X, Qian M, Song H, Liu Z-K, Xu D. Integrating data mining and machine learning to discover high-strength ductile titanium alloys. Acta Mater. 2021;202:211.

    CAS  Google Scholar 

  27. Wu Q, Wang Z, Hu X, Zheng T, Yang Z, He F, Li J, Wang J. Uncovering the eutectics design by machine learning in the Al–Co–Cr–Fe–Ni high entropy system. Acta Mater. 2020;182:278.

    CAS  Google Scholar 

  28. Li Y, Liu Y, Luo S, Wang Z, Wang K, Huang Z, Zhao H, Jiang L. Neural network model for correlating microstructural features and hardness properties of nickel-based superalloys. J Mater Res Technol. 2020;9(6):14467.

    CAS  Google Scholar 

  29. Rickman JM, Chan HM, Harmer MP, Smeltzer JA, Marvel CJ, Roy A, Balasubramanian G. Materials informatics for the screening of multi-principal elements and high-entropy alloys. Nat Commun. 2019;10(1):2618.

    CAS  Google Scholar 

  30. Islam N, Huang W, Zhuang HL. Machine learning for phase selection in multi-principal element alloys. Comput Mater Sci. 2018;150:230.

    CAS  Google Scholar 

  31. Huang W, Martin P, Zhuang HL. Machine-learning phase prediction of high-entropy alloys. Acta Mater. 2019;169:225.

    CAS  Google Scholar 

  32. Qin Z, Wang Z, Wang Y, Zhang L, Li W, Liu J, Wang Z, Li Z, Pan J, Zhao L, Liu F, Tan L, Wang J, Han H, Jiang L, Liu Y. Phase prediction of Ni-base superalloys via high-throughput experiments and machine learning. Mater Res Lett. 2020;9(1):32.

    Google Scholar 

  33. Kaufmann K, Vecchio KS. Searching for high entropy alloys: a machine learning approach. Acta Mater. 2020;198:178.

    CAS  Google Scholar 

  34. Yan Y, Lu D, Wang K. Accelerated discovery of single-phase refractory high entropy alloys assisted by machine learning. Comput Mater Sci. 2021;199: 110723.

    CAS  Google Scholar 

  35. Wu S, Kondo Y, Kakimoto M, Yang B, Yamada H, Kuwajima I, Lambard G, Hongo K, Xu Y, Shiomi J, Schick C, Morikawa J, Yoshida R. Machine-learning-assisted discovery of polymers with high thermal conductivity using a molecular design algorithm. Npj Comput Mater. 2019;5(1):66.

    Google Scholar 

  36. Zhang Y, Ling C. A strategy to apply machine learning to small datasets in materials science. Npj Comput Mater. 2018;4(1):25.

    CAS  Google Scholar 

  37. Qian X, Peng S, Li X, Wei Y, Yang R. Thermal conductivity modeling using machine learning potentials: application to crystalline and amorphous silicon. Mater Today Phys. 2019;10: 100140.

    Google Scholar 

  38. Wan J, Jiang JW, Park HS. Machine learning-based design of porous graphene with low thermal conductivity. Carbon. 2020;157:262.

    CAS  Google Scholar 

  39. Tan B, Lu Y, Zhou J, Chouhan T, Wang H, Golani P, Xu M, Xu Q, Guan C, Liu Z. Machine learning-guided synthesis of advanced inorganic materials. Mater Today. 2020;41:72.

    Google Scholar 

  40. Raccuglia P, Elbert KC, Adler PD, Falk C, Wenny MB, Mollo A, Zeller M, Friedler SA, Schrier J, Norquist AJ. Machine-learning-assisted materials discovery using failed experiments. Nature. 2016;533(7601):73.

    CAS  Google Scholar 

  41. Liu S, Kappes BB, Amin-ahmadi B, Benafan O, Zhang X, Stebner AP. Physics-informed machine learning for composition–process–property design: shape memory alloy demonstration. Appl Mater Today. 2021;22: 100898.

    Google Scholar 

  42. Bhandari U, Rafi MR, Zhang C, Yang S. Yield strength prediction of high-entropy alloys using machine learning. Mater Today Commun. 2021;26: 101871.

    CAS  Google Scholar 

  43. Zhang L, Qian K, Huang J, Liu M, Shibuta Y. Molecular dynamics simulation and machine learning of mechanical response in non-equiatomic FeCrNiCoMn high-entropy alloy. J Mater Res Technol. 2021;13:2043.

    CAS  Google Scholar 

  44. Li J, Zhang Y, Cao X, Zeng Q, Zhuang Y, Qian X, Chen H. Accelerated discovery of high-strength aluminum alloys by machine learning. Commun Mater. 2020;1(1):73.

    Google Scholar 

  45. Wen C, Wang C, Zhang Y, Antonov S, Xue D, Lookman T, Su Y. Modeling solid solution strengthening in high entropy alloys using machine learning. Acta Mater. 2021;212: 116917.

    CAS  Google Scholar 

  46. Rice JR. Dislocation nucleation from a crack tip: An analysis based on the Peierls concept. J Mech Phys Solids. 1992;40(2):239.

    CAS  Google Scholar 

  47. Theodore Gray. Periodic Table, https://periodictable.com/About/index.html, Accessed: 20 Jul 2022

  48. Takeuchi A, Inoue A. Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element. Mater Trans. 2005;46(12):2817.

    CAS  Google Scholar 

  49. Zhang Y, Wen C, Wang C, Antonov S, Xue D, Bai Y, Su Y. Phase prediction in high entropy alloys with a rational selection of materials descriptors and machine learning models. Acta Mater. 2020;185:528.

    CAS  Google Scholar 

  50. Huang X, Jin C, Zhang C, Zhang H, Fu H. Machine learning assisted modelling and design of solid solution hardened high entropy alloys. Mater Des. 2021;211: 110177.

    CAS  Google Scholar 

  51. Natekin A, Knoll A. Gradient boosting machines, a tutorial. Front Neurorobot. 2013;7:21.

    Google Scholar 

  52. Friedman JH. Greedy function approximation: a gradient boosting machine. Ann Stat. 2001;29(5):1189.

    Google Scholar 

  53. Senkov ON, Wilks GB, Scott JM, Miracle DB. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys. Intermetallics. 2011;19(5):698.

    CAS  Google Scholar 

  54. Li Z, Fu L, Zheng H, Yu R, Lv L, Sun Y, Dong X, Shan A. Effect of annealing temperature on microstructure and mechanical properties of a severe cold-rolled FeCoCrNiMn high-entropy alloy. Metall Mater Trans A. 2019;50(7):3223.

    CAS  Google Scholar 

  55. Lee C, Chou Y, Kim G, Gao MC, An K, Brechtl J, Zhang C, Chen W, Poplawsky JD, Song G, Ren Y, Chou YC, Liaw PK. Lattice-distortion-enhanced yield strength in a refractory high-entropy alloy. Adv Mater. 2020;32(49):2004029.

    CAS  Google Scholar 

  56. An Z, Mao S, Liu Y, Wang L, Zhou H, Gan B, Zhang Z, Han X. A novel HfNbTaTiV high-entropy alloy of superior mechanical properties designed on the principle of maximum lattice distortion. J Mater Res Technol. 2021;79:109.

    CAS  Google Scholar 

  57. Wang Z, Fang Q, Li J, Liu B, Liu Y. Effect of lattice distortion on solid solution strengthening of BCC high-entropy alloys. J Mater Res Technol. 2018;34(2):349.

    CAS  Google Scholar 

  58. Wang M, Ma ZL, Xu ZQ, Cheng XW. Effects of vanadium concentration on mechanical properties of V NbMoTa refractory high-entropy alloys. Mater Sci Eng A. 2021;808: 140848.

    CAS  Google Scholar 

  59. Dong YG, Chen S, Jia NN, Zhang QH, Wang L, Xue YF, Jin K. Microstructures and mechanical properties of Ta–Nb–Zr–Ti–Al refractory high entropy alloys with varying Ta/Ti ratios. Tungsten. 2021;3(4):406.

    Google Scholar 

  60. Natarajan S, Gopalan V, Rajan RAA, Jen CP. Effect of rare earth metals (Y, La) and refractory metals (Mo, Ta, Re) to improve the mechanical properties of W-Ni-Fe alloy-a review. Materials. 2021;14(7):1600.

    Google Scholar 

Download references

Acknowledgements

This work is supported by the Faculty Startup Fund in the New York State College of Ceramics at Alfred University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kun Wang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, YG., Wang, K. The intrinsic strength prediction by machine learning for refractory high entropy alloys. Tungsten 5, 531–538 (2023). https://doi.org/10.1007/s42864-022-00169-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42864-022-00169-y

Keywords

Navigation