Skip to main content
Log in

Heat Treatment Influence on Tribological Properties of AlCoCrCuFeNi High-Entropy Alloy in Hydrogen Peroxide-Solution

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Tribological properties of AlCoCrCuFeNi high-entropy alloy were studied after annealing at various temperatures. X-ray diffraction, scanning electron microscopy, energy dispersive spectroscopy, microhardness tester and pin-on-disc tribometer analyses were performed to reveal the microstructure, composition, microhardness and tribological behavior variations. With the heat treatment temperature increasing, time taken for friction coefficient going through the rapidly dropping down and then into the stable period increases, the white sheets structures and their size in dendrite area of the AlCoCrCuFeNi alloy becomes bigger, however BCC content declined dramatically. Then, the average friction coefficient of the AlCoCrCuFeNi/Si3N4 sliding friction pair increase from 0.037 to 0.115, and the pin wear loss increase from 3 to 11 µm.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. B. Cantor, I.T.H. Chang, P. Knight et al., Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng. A 375–377, 213–218 (2004)

    Article  Google Scholar 

  2. Y.Y. Chen, U.T. Hong, J.W. Yeh et al., Selected corrosion behaviors of a Cu0.5NiAlCoCrFeSi bulk glassy alloy in 288 °C high-purity water. Scr. Mater. 12(54), 1997–2001 (2006)

    Article  Google Scholar 

  3. A. Takeuchi, N. Chen, J.W. Yeh et al., Pd20Pt20Cu20Ni20P20 high-entropy alloy as a bulk metallic glass in the centimeter. Intermetallics 10(19), 1546–1554 (2011)

    Article  Google Scholar 

  4. Z.P. Lu, H. Wang, J.W. Yeh et al., An assessment on the future development of high-entropy alloys: summary from a recent workshop. Intermetallics 66, 67–76 (2015)

    Article  CAS  Google Scholar 

  5. J.W. Yeh, S.K. Chen, S.J. Lin et al., Nanostructure high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv. Eng. Mater. 6(5), 299–303 (2004)

    Article  CAS  Google Scholar 

  6. S. Singh, N. Wanderk, K. Kiefer et al., Effect of decomposition of the Cr–Fe–Co rich phase of AlCoCrCuFeNi high entropy alloy on magnetic properties. Ultramicroscopy 111, 619–622 (2011)

    Article  CAS  Google Scholar 

  7. N.A.P.K. Kumar, C. Li, K.J. Leonard et al., Microstructural stability and mechanical behavior of FeNiMnCr high entropy alloy under ion irradiation. Acta Mater. 113, 230–244 (2016)

    Article  CAS  Google Scholar 

  8. B. Ren, S.Q. Yan, R.F. Zhao et al., Structure and properties of (AlCrMoNiTi)Nx and (AlCrMoZrTi)Nx films by reactive RF sputtering. Surf. Coat. Technol. 235, 764–772 (2013)

    Article  CAS  Google Scholar 

  9. T. Borkar, B. Gwalani, D. Choudhuri et al., Hierarchical multi-scale microstructural evolution in an as-cast Al2CuCrFeNi2 complex concentrated alloy. Intermetallics 71, 31–42 (2016)

    Article  CAS  Google Scholar 

  10. S.G. Ma, J.W. Qiao, Z.H. Wang et al., Microstructural features and tensile behaviors of the Al0.5CrCuFeNi2 high-entropy alloys by cold rolling and subsequent annealing. Mater. Des. 88, 1057–1062 (2015)

    Article  CAS  Google Scholar 

  11. B. Schuh, F. Mendez-Martin, B. Völker et al., Mechanical properties, microstructure and thermal stability of a nanocrystalline CoCrFeMnNi high-entropy alloy after severe plastic deformation. Acta Mater. 96, 258–268 (2015)

    Article  CAS  Google Scholar 

  12. H. Zhang, Y. Pan, Y.Z. He, Effects of annealing on the microstructure and properties of 6FeNiCoCrAlTiSi high-entropy alloy coating prepared by laser cladding. J. Therm. Spray Technol. 20(5), 1049–1055 (2011)

    Article  Google Scholar 

  13. M.H. Chuang, M.H. Tsai, J.W. Yeh et al., Microstructure and wear behavior of AlxCo1.5CrFeNi1.5Tiy high-entropy alloys. Acta Mater. 59, 6308–6317 (2011)

    Article  CAS  Google Scholar 

  14. T.W. Lu, C.S. Feng, Z. Wang et al., Microstructures and mechanical properties of CoCrFeNiAl0.3 high-entropy alloy thin films by pulsed laser deposition. Appl. Surf. Sci. 494(15), 72–79 (2019)

    Article  CAS  Google Scholar 

  15. W.B. Liao, S. Lan, L.B. Gao et al., Nanocrystalline high-entropy alloy (CoCrFeNiAl0.3) thin-film coating by magnetron sputtering. Thin Solid Films 638(30), 383–388 (2017)

    Article  CAS  Google Scholar 

  16. A.S. Gohardani, J. Stanojev, A. Demaire et al., Green space propulsion: opportunities and prospects. Prog. Aerosp. Sci. 71, 128–149 (2014)

    Article  Google Scholar 

  17. H. Kang, D. Jang, S. Kwon, Demonstration of 500 N scale bipropellant thruster using non-toxic hypergolic fuel and hydrogen peroxide. Aerosp. Sci. Technol. 49, 209–214 (2016)

    Article  Google Scholar 

  18. R. Gostowski, Isothermal calorimetric observations of the effect of welding on compatibility of stainless steels with high-test hydrogen peroxide propellant. Thermochim. Acta 404(1), 279–281 (2003)

    Article  CAS  Google Scholar 

  19. Y. Yu, W.M. Liu, T.B. Zhang et al., Microstructure and tribological properties of AlCoCrFeNiTi0.5 high-entropy alloy in hydrogen peroxide solution. Metall. Mater. Trans. A 45(1), 201–207 (2014)

    Article  CAS  Google Scholar 

  20. H.T. Duan, Y. Wu, M. Hua et al., Tribological properties of AlCoCrFeNiCu high-entropy alloy in hydrogen peroxide solution and in oil lubricant. Wear 297, 1045–1051 (2013)

    Article  CAS  Google Scholar 

  21. R.S. Ganji, P.S. Karthik, K.B.S. Rao, K.V. Rajulapati, Strengthening mechanisms in equiatomic ultrafine grained AlCoCrCuFeNi high-entropy alloy studied by micro- and nanoindentation methods. Acta Mater. 125, 58–68 (2017)

    Article  CAS  Google Scholar 

  22. C.D. Gómez-Esparza, R. Peréz-Bustamante, J.M. Alvarado-Orozco et al., Microstructural evaluation and nanohardness of an AlCoCuCrFeNiTi high-entropy alloy. Int. J. Miner. Metall. Mater. 26(5), 634–641 (2019)

    Article  Google Scholar 

  23. Y.Y. Liu, Z. Chen, J.C. Shi et al., The effect of Al content on microstructures and comprehensive properties in AlxCoCrCuFeNi high entropy alloys. Vacuum 161, 143–149 (2019)

    Article  CAS  Google Scholar 

  24. R. Kulkarni, B.S. Murty, V. Srinivas, Study of microstructure and magnetic properties of AlNiCo(CuFe) high entropy alloy. J. Alloys Compd. 746, 194–199 (2018)

    Article  CAS  Google Scholar 

  25. A. Munitz, M.J. Kaufman, M. Nahmany et al., Microstructure and mechanical properties of heat treated Al1.25CoCrCuFeNi high entropy alloys. Mater. Sci. Eng. A 714, 146–159 (2018)

    Article  Google Scholar 

  26. A. Takeuchi, A. Inoue, Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element. Mater. Trans. 46(12), 2817–2829 (2005)

    Article  CAS  Google Scholar 

  27. C.C. Tung, J.W. Yeh, T.T. Shun et al., On the elemental effect of AlCoCrCuFeNi high-entropy alloy system. Mater. Lett. 61, 1–5 (2007)

    Article  CAS  Google Scholar 

  28. C.J. Tong, M.R. Chen, J.W. Yeh et al., Mechanical performance of the AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements. Metall. Mater. Trans. A 36(5), 1263–1271 (2005)

    Article  Google Scholar 

  29. J.M. Wu, S.J. Lin, J.W. Yeh et al., Adhesive wear behavior of AlxCoCrCuFeNi high-entropy alloys as a function of aluminum content. Wear 261, 513–519 (2006)

    Article  CAS  Google Scholar 

  30. K.B. Zhang, Z.Y. Fu, J.Y. Zhang et al., Nanocrystalline CoCrFeNiCuAl high-entropy solid solution synthesized by mechanical alloying. J. Alloys Compd. 485, 31–34 (2009)

    Article  Google Scholar 

  31. R.E. Reed-Hill, R. Abbaschian, Physical Metallurgy Principles, 3rd edn. (PWS-KENT, Boston, 1994), pp. 140–146

    Google Scholar 

  32. T. Courtney, Mechanical Behavior of Materials (McGraw-Hill, New York, 1990), pp. 173–184

    Google Scholar 

  33. G.E. Dieter, Mechanical Metallurgy (SI Metric Editions), vol. 117–121 (McGraw-Hill, New York, 1988), pp. 208–212

    Google Scholar 

  34. M.M. Khruschov, Principles of abrasive wear. Wear 28, 69–88 (1974)

    Article  Google Scholar 

  35. C.P. Hu, Y.L. Zhao, J.P. Wang et al., Tribological properties of AlCoCrFeNiCu high-entropy alloy in high concentration hydrogen peroxide. Tribology 31(5), 439–446 (2011)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to the financial support of the National Natural Science Foundation of China (Nos. 51275361, 51505341) and the help in performing the experimental works by Mr. Hu Chengping, Assistant Engineer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. T. Duan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, X.S., Li, J., Jin, Y.L. et al. Heat Treatment Influence on Tribological Properties of AlCoCrCuFeNi High-Entropy Alloy in Hydrogen Peroxide-Solution. Met. Mater. Int. 26, 1286–1294 (2020). https://doi.org/10.1007/s12540-019-00532-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-019-00532-8

Keywords

Navigation