Skip to main content
Log in

Improving Tensile Properties of Dissimilar TLP Bonding Joints of IN718 Nickel-Based Superalloy/316LN Austenitic Steel by Long-Term Post-bonded Homogenization Treatment

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The presence of boride precipitates has a detrimental impact on the mechanical properties of TLP bonding joints. This study investigated the effectiveness of the long-term post-bonded homogenization treatment (PBHT) in mitigating the adverse effects of boride precipitates and enhancing the overall performance of TLP joints formed with IN718/316LN. Within the diffusion affected zone on the side of 316LN (referred to as DAZ-316LN), the low concentrations of Cr, Mo, and Nb in boride precipitates, coupled with a significant lattice mismatch at the boundary between boride precipitates and the matrix, facilitate the dissolution of boride precipitates during the PBHT process. This contributes to the improvement of the metallurgical bonding strength at the interface between the isothermal solidification zone (ISZ) and DAZ-316LN (referred to as the ISZ/DAZ-316LN interface), consequently shifting the location of tensile fracture from the ISZ/DAZ-316LN interface towards ISZ. Moreover, the PBHT process induces a breakdown of needle-like or continuously distributed borides along grain boundaries, transforming them into small block or short acicular boride precipitates that are uniformly distributed in the joint. This optimization process not only enhances the precipitation-strengthening effect but also alleviates stress concentration, resulting in an overall improvement in the joint’s strength and ductility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. D. LeRoy Olson, T.A. Siewert, S. Liu, and G.R. Edwards: Welding, Brazing, and Soldering, ASM International, Ohio, 1993, p. 1299.

  2. D.S. Duvall, W.A. Owczarski, and D.F. Paulonis: Weld. J. (NY), 1974, vol. 53, pp. 203–14.

    CAS  Google Scholar 

  3. Y. Nakao, K. Nishimoto, K. Shinozaki, and C.Y. Kang: in Advanced Joining Technologies, T.H. North, ed., Springer Netherlands, Dordrecht, 1990, pp. 129–44.

  4. W.D. MacDonald and T.W. Eagar: Annu. Rev. Mater. Sci., 1992, vol. 22, pp. 23–46.

    Article  CAS  Google Scholar 

  5. M.S. Yeh and T.H. Chuang: Weld. J. Incl. Weld. Res. Suppl., 1997, vol. 76, p. 517S.

    Google Scholar 

  6. W. Li, J.-H. Chang, B.-F. Wen, and R. Cao: J. Iron. Steel Res. Int., 2022, vol. 29, pp. 677–86.

    Article  CAS  Google Scholar 

  7. M. Pouranvari, A. Ekrami, and A.H. Kokabi: Weld. J. 2014, vol. 93, pp. 60s–8s.

    Google Scholar 

  8. M. Pouranvari, A. Ekrami, and A.H. Kokabi: Mater. Sci. Technol., 2014, vol. 30, pp. 109–15.

    Article  CAS  Google Scholar 

  9. M. Pouranvari, A. Ekrami, and A.H. Kokabi: Mater. Sci. Eng. A, 2008, vol. 490, pp. 229–34.

    Article  Google Scholar 

  10. M. Pouranvari, A. Ekrami, and A.H. Kokabi: J. Alloys Compd., 2009, vol. 469, pp. 270–75.

    Article  CAS  Google Scholar 

  11. M. Pouranvari, A. Ekrami, and A.H. Kokabi: J. Alloys Compd., 2017, vol. 723, pp. 84–91.

    Article  CAS  Google Scholar 

  12. M. Pouranvari, A. Ekrami, and A.H. Kokabi: J. Alloys Compd., 2013, vol. 563, pp. 143–49.

    Article  CAS  Google Scholar 

  13. Y.X. Liu, S.J. Yan, C.S. Zhang, D.Z. Chen, Q. Xu, and G.D. Cui: J. Iron. Steel Res. Int., 2022, vol. 29, pp. 1334–41.

    Article  CAS  Google Scholar 

  14. S. Steuer and R.F. Singer: Metall. Mater. Trans. A, 2013, vol. 44A, pp. 2226–32.

    Article  Google Scholar 

  15. K. Tokoro, N.P. Wikstrom, O.A. Ojo, and M.C. Chaturvedi: Mater. Sci. Eng. A, 2008, vol. 477, pp. 311–18.

    Article  Google Scholar 

  16. B. Binesh and A. Jazayeri Gharehbagh: J. Mater. Sci. Technol., 2016, vol. 32, pp. 1137–51.

    Article  CAS  Google Scholar 

  17. C. Xiao, W. Jiang, Y. Yu, M. Song, S.-T. Tu, and J. Gong: Mater. Sci. Eng. A, 2020, vol. 782, p. 139200.

    Article  CAS  Google Scholar 

  18. M. Salmaliyan and M. Shamanian: Heat Mass Transf., 2019, vol. 55, pp. 2083–93.

    Article  CAS  Google Scholar 

  19. B. Binesh: J. Manuf. Process., 2020, vol. 57, pp. 196–208.

    Article  Google Scholar 

  20. Y. Lin, X. Jiangtao, D. Yajie, R. Jin, S. Junmiao, and L. Jinglong: J. Mater. Sci. Technol., 2021, vol. 61, pp. 176–85.

    Article  Google Scholar 

  21. A.D. Jamaloei, A. Khorram, and A. Jafari: J. Manuf. Process., 2017, vol. 29, pp. 447–57.

    Article  Google Scholar 

  22. A. Malekan, M. Farvizi, S.E. Mirsalehi, N. Saito, and K. Nakashima: Mater. Sci. Eng. A, 2019, vol. 755, pp. 37–49.

    Article  CAS  Google Scholar 

  23. M. Yang, Y. Wang, R. Ding, Q.Y. Guo, C.X. Liu, and Y.C. Liu: Mater. Sci. Eng. A, 2023, vol. 881, p. 145440.

    Article  CAS  Google Scholar 

  24. V. Jalilvand, H. Omidvar, M.R. Rahimipour, and H.R. Shakeri: Mater. Des., 2013, vol. 52, pp. 36–46.

    Article  CAS  Google Scholar 

  25. S.Y. Wang, Y. Sun, C.Y. Cui, X.F. Sun, Y.Z. Zhou, Y.M. Ma, and H.L. An: J. Mater. Sci. Technol., 2021, vol. 80, pp. 244–58.

    Article  CAS  Google Scholar 

  26. S. Hadibeyk, B. Beidokhti, and S.A. Sajjadi: J. Alloys Compd., 2018, vol. 731, pp. 929–35.

    Article  CAS  Google Scholar 

  27. A. Ekrami, S. Moeinifar, and A.H. Kokabi: Mater. Sci. Eng. A, 2007, vol. 456, pp. 93–98.

    Article  Google Scholar 

  28. B. Abbasi-Khazaei, A. Jahanbakhsh, and R. Bakhtiari: Mater. Sci. Eng. A, 2016, vol. 651, pp. 93–101.

    Article  CAS  Google Scholar 

  29. E. Baharzadeh, M. Shamanian, M. Rafiei, and H. Mostaan: J. Mater. Process. Technol., 2019, vol. 274, p. 116297.

    Article  CAS  Google Scholar 

  30. A.I. Ghahferokhi, M. Kasiri-Asgarani, R. Ebrahimi-kahrizsangi, M. Rafiei, H.R. Bakhsheshi-Rad, K. Amini, and F. Berto: J. Mater. Res. Technol., 2022, vol. 21, pp. 2178–90.

    Article  CAS  Google Scholar 

  31. A. Ghasemi and M. Pouranvari: Mater. Des., 2019, vol. 182, p. 108008.

    Article  CAS  Google Scholar 

  32. J. Ruiz-Vargas, N. Siredey-Schwaller, N. Gey, P. Bocher, and A. Hazotte: J. Mater. Process. Technol., 2013, vol. 213, pp. 20–29.

    Article  CAS  Google Scholar 

  33. J. Ruiz-Vargas, N. Siredey-Schwaller, P. Bocher, and A. Hazotte: J. Mater. Process. Technol., 2013, vol. 213, pp. 2074–80.

    Article  CAS  Google Scholar 

  34. M.S. Sulonen: Acta Metall., 1964, vol. 12, pp. 749–53.

    Article  Google Scholar 

  35. G. Miyamoto, A. Goto, N. Takayama, and T. Furuhara: Scripta Mater., 2018, vol. 154, pp. 168–71.

    Article  CAS  Google Scholar 

  36. M. Perez: Scripta Mater., 2005, vol. 52, pp. 709–12.

    Article  CAS  Google Scholar 

  37. Y.-T. Wang, Y. Adachi, K. Nakajima, and Y. Sugimoto: Acta Mater., 2010, vol. 58, pp. 4849–58.

    Article  CAS  Google Scholar 

  38. H.S. Ren, H.P. Xiong, S.J. Pang, B. Chen, X. Wu, Y.Y. Cheng, and B.Q. Chen: Metall. Mater. Trans. A, 2016, vol. 47A, pp. 1668–76.

    Article  Google Scholar 

  39. X. Yuan, M.B. Kim, Y.H. Cho, and C.Y. Kang: Metall. Mater. Trans. A, 2012, vol. 43A, pp. 1989–2001.

    Article  Google Scholar 

  40. L. Babout, Y. Brechet, E. Maire, and R. Fougères: Acta Mater., 2004, vol. 52, pp. 4517–25.

    Article  CAS  Google Scholar 

  41. J. Wei, Y. Ye, Z. Sun, G. Zou, H. Bai, A. Wu, and L. Liu: Metall. Mater. Trans. A, 2017, vol. 48A, pp. 4622–31.

    Article  Google Scholar 

  42. H. Hongjie, S. Guangmin, L. Mingcan, and J. Yingjun: Rare Met. Mater. Eng., 2018, vol. 47, pp. 2290–97.

    Article  Google Scholar 

  43. M. Mosallaee, A. Ekrami, K. Ohsasa, and K. Matsuura: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 2389–402.

    Article  CAS  Google Scholar 

  44. A. Sadeghian, S.E. Mirsalehi, F. Arhami, A. Malekan, N. Saito, and K. Nakashima: Metall. Mater. Trans. A, 2021, vol. 52A, pp. 1526–39.

    Article  Google Scholar 

  45. M. Hosseini, A. Ghasemi, and M. Pouranvari: Metall. Mater. Trans. A, 2020, vol. 51A, pp. 5715–24.

    Article  Google Scholar 

  46. H.J. Sung, J.H. Moon, M.J. Jang, H.S. Kim, and S.J. Kim: Metall. Mater. Trans. A, 2018, vol. 49A, pp. 5323–32.

    Article  Google Scholar 

  47. K.O. Cooke, T.I. Khan, and G.D. Oliver: Metall. Mater. Trans. A, 2011, vol. 42A, pp. 2271–77.

    Article  Google Scholar 

  48. N. Sheng, J. Liu, T. Jin, X. Sun, and Z. Hu: Metall. Mater. Trans. A, 2015, vol. 46A, pp. 5772–81.

    Article  Google Scholar 

  49. E. Norouzi, M. Atapour, M. Shamanian, and A. Allafchian: Mater. Des., 2016, vol. 99, pp. 543–51.

    Article  CAS  Google Scholar 

  50. D. Zhao, W. Du, Z. Xiu, and J. Yan: Mater Charact, 2023, vol. 200, p. 112902.

    Article  CAS  Google Scholar 

  51. M. Pouranvari, A. Ekrami, and A.H. Kokabi: Mater. Sci. Technol., 2013, vol. 29, pp. 980–84.

    Article  CAS  Google Scholar 

  52. M. Pouranvari, A. Ekrami, and A.H. Kokabi: J. Alloys Compd., 2008, vol. 461, pp. 641–47.

    Article  CAS  Google Scholar 

  53. A. Ghasemi and M. Pouranvari: Sci. Technol. Weld. Join., 2018, vol. 23, pp. 441–48.

    Article  CAS  Google Scholar 

  54. A. Ghasemi and M. Pouranvari: Metall. Mater. Trans. A, 2019, vol. 50A, pp. 2235–45.

    Article  Google Scholar 

  55. L.A. Gypen and A. Deruyttere: J. Mater. Sci., 1977, vol. 12, pp. 1034–38.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the National Key R&D Program of China (2022YFB3705300) and the National Natural Science Foundation of China (Granted Nos. 52271111 and 52034004) for grant and financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chenxi Liu.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, M., Zhang, B., Ding, R. et al. Improving Tensile Properties of Dissimilar TLP Bonding Joints of IN718 Nickel-Based Superalloy/316LN Austenitic Steel by Long-Term Post-bonded Homogenization Treatment. Metall Mater Trans A (2024). https://doi.org/10.1007/s11661-024-07371-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11661-024-07371-2

Navigation