Skip to main content
Log in

Effect of Homogenization on Metallurgical Structure of Nicrofer 5520 (IN-617) Superalloy Joints Diffusion-Brazed Using a Ni–Cr–Si–B Interlayer

  • High Temperature Alloys: Manufacturing, Processing, and Repair
  • Published:
JOM Aims and scope Submit manuscript

Abstract

This study aimed to homogenize diffusion-brazed Nicrofer 5520 superalloy joints to achieve the most similar microstructure to the base metal. In this regard, diffusion brazing treatment was carried out at a temperature of 1120°C by using a 30-µm-thick BNi-2 interlayer. After performing the diffusion brazing and completing the isothermal solidification (bonding time of 20 min), the specimens were homogenization post-bond heat treated under a vacuum atmosphere at 1180°C and for different holding times of 4, 8, 10, 12, 14, 16, 18, and 20 h. Electron microscopy was used to investigate the microstructural evolutions and chemical composition of precipitated phases. The results revealed that by increasing the holding time, the distribution of elements in the width of the joint area became more uniform and the chemical composition became closer to the base metal. Simultaneously, the amount and volume fraction of precipitates in the diffusion-affected zone (DAZ) decreased. After 18 h in the homogenization treatment, the DAZ disappeared and only fine precipitates of nickel-rich silicide and carbide were retained at the boundary. After 20 h, the precipitates were dissolved, grains of the bond area began to grow, and the interlayer became significantly non-distinguishable from the adjacent base metal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3.
Fig. 4.
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. S. Salari, M.S. Rahman, A.A. Polycarpou, and A. Beheshti, Mater. Sci. Eng. A 788, 139539. (2020).

    Article  Google Scholar 

  2. H. Shah Hosseini, M. Shamanian, and A. Kermanpur, Mater. Charact. 62(4), 425. (2011).

    Article  Google Scholar 

  3. M. Pouranvari, A. Ekrami, and A.H. Kokabi, J. Alloy. Compd. 563, 143. (2013).

    Article  Google Scholar 

  4. J. Sun, W. Ren, P. Nie, J. Huang, K. Zhang, and Z. Li, Mater. Des. 175, 107823. (2019).

    Article  Google Scholar 

  5. N.R. Philips, C.G. Levi, and A.G. Evans, Metall. Mater. Trans. A. 39(1), 142. (2008).

    Article  Google Scholar 

  6. Y. Zhou, W.F. Gale, and T.H. North, Int. Mater. Rev. 40(5), 181. (1995).

    Article  Google Scholar 

  7. Y. Yan, B. Liu, T. Xu, L. Qiao, S. Qin, J. Cao, J. Qi, J. Materiomics 1–7 (2021)

  8. Z. Wang, G. Wang, M. Li, J. Lin, Q. Ma, A. Zhang, Z. Zhong, J. Qi, and J. Feng, Carbon 118, 723. (2017).

    Article  Google Scholar 

  9. Y. Yan, T. Liu, J. Lin, L. Qiao, J. Tu, S. Qin, J. Cao, and J. Qi, J. Alloys Compd 883, 160933. (2021).

    Article  Google Scholar 

  10. R. Bakhtiari, A. Ekrami, and T.I. Khan, J. Mater. Eng. Perform. 24(4), 1687. (2015).

    Article  Google Scholar 

  11. R.K. Saha and T.I. Khan, J. Mater. Sci. 42(22), 9187. (2007).

    Article  Google Scholar 

  12. J. Cao, Y.F. Wang, X.G. Song, C. Li, and J.C. Feng, Mater. Sci. Eng., A 590, 1. (2014).

    Article  Google Scholar 

  13. J. Asadi, S.A. Sajjadi, and H. Omidvar, Trans. Nonferr. Met. Soc. China 31(9), 2703. (2021).

    Article  Google Scholar 

  14. S. Ghaderi, F. Karimzadeh, A. Ashrafi, and S.H. Hosseini, J. Manuf. Process. 60, 213. (2020).

    Article  Google Scholar 

  15. M. Paidar, K.S. Ashraff Ali, O.O. Ojo, V. Mohanavel, J. Vairamuthu, and M. Ravichandran, J. Manuf. Process. 61, 383. (2021).

    Article  Google Scholar 

  16. H. Esmaeili, S.E. Mirsalehi, and A. Farzadi, Vacuum 152, 305. (2018).

    Article  Google Scholar 

  17. F. Jalilian, M. Jahazi, and R.A.L. Drew, Mater. Sci. Eng., A 423(1), 269. (2006).

    Article  Google Scholar 

  18. F. Arhami, S.E. Mirsalehi, and A. Sadeghian, J. Mater. Process. Technol. 265, 219. (2019).

    Article  Google Scholar 

  19. A. Sadeghian, F. Arhami, and S.E. Mirsalehi, J. Manuf. Process. 44, 72. (2019).

    Article  Google Scholar 

  20. A.Y. Shamsabadi, R. Bakhtiari, and G. Eisaabadi, J. Alloys Compd 685, 896. (2016).

    Article  Google Scholar 

  21. A. Doroudi, A. Dastgheib, and H. Omidvar, J. Manuf. Process. 53, 213. (2020).

    Article  Google Scholar 

  22. M. Pouranvari, A. Ekrami, and A.H. Kokabi, J. Alloy. Compd. 723, 84. (2017).

    Article  Google Scholar 

  23. M.A. Arafin, M. Medraj, D.P. Turner, and P. Bocher, Mater. Sci. Eng. A 447(1), 125. (2007).

    Article  Google Scholar 

  24. O.A. Idowu, O.A. Ojo, and M.C. Chaturvedi, Metall. and Mater. Trans. A. 37(9), 2787. (2006).

    Article  Google Scholar 

  25. G. Marchese, G. Basile, E. Bassini, A. Aversa, M. Lombardi, D. Ugues, P. Fino, and S. Biamino, Materials 11, 106. (2018).

    Article  Google Scholar 

  26. A. Malekan, M. Farvizi, S.E. Mirsalehi, N. Saito, K. Nakashima, J. Manuf. Process. 47129, 129. (2019).

  27. D. Amiri, S.A. Sajjadi, R. Bakhtiari, and A. Kamyabi-Gol, J. Manuf. Process. 32, 644. (2018).

    Article  Google Scholar 

  28. W.F. Gale and E.R. Wallach, Metall. Trans. A 22(10), 2451. (1991).

    Article  Google Scholar 

  29. M. Pouranvari, A. Ekrami, and A.H. Kokabi, Materiali in Tehnologije 47, 593. (2013).

    Google Scholar 

  30. B. Zhang, G. Sheng, Y. Jiao, Z. Gao, X. Gong, H. Fan, and J. Zhong, J. Alloy. Compd. 695, 3202. (2017).

    Article  Google Scholar 

  31. A. Malekan, M. Farvizi, S.E. Mirsalehi, N. Saito, and K. Nakashima, Mater. Sci. Eng. A 755, 37. (2019).

    Article  Google Scholar 

  32. S. Rundqvist, An X-ray investigation of the nickel-boron system: the crystal structures of orthorhombic and monoclinic Ni4B3, United States Air Force, Office of Scientific Research (1959)

  33. M. Witt and J. Charles, Mater. Sci. Technol. 1(12), 1063. (1985).

    Article  Google Scholar 

  34. X.L. He, M. Djahazi, J.J. Jonas, and J. Jackman, Acta Metall. Mater. 39(10), 2295. (1991).

    Article  Google Scholar 

Download references

Acknowledgement

The authors gratefully acknowledge Dr. Mahshid Abedi from the Isfahan University of Medical Sciences for assistance with FESEM analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyyed Ehsan Mirsalehi.

Ethics declarations

Conflict of interests

The authors have no conflicts of interest to declare and certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript. All co-authors have seen and agree with the contents of the manuscript, and there is no financial interest to report.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nasajpour, A., Mirsalehi, S.E. & Farzadi, A. Effect of Homogenization on Metallurgical Structure of Nicrofer 5520 (IN-617) Superalloy Joints Diffusion-Brazed Using a Ni–Cr–Si–B Interlayer. JOM 74, 3276–3288 (2022). https://doi.org/10.1007/s11837-022-05292-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-022-05292-2

Navigation